基于速度多面体的仿人机器人约束可操作性研究

P. Long, T. Padır
{"title":"基于速度多面体的仿人机器人约束可操作性研究","authors":"P. Long, T. Padır","doi":"10.1142/s0219843619500373","DOIUrl":null,"url":null,"abstract":"Robot performance measures are important tools for quantifying the ability to carry out manipulation tasks. Generally, these measures examine the system’s kinematic transformations from configuration to task space. This means that environmental constraints are neglected in spite of the significant effects they may have on the robot’s admissible motions. In this paper, we propose a new measure called the constrained manipulability polytope (CMP) that considers the system’s kinematic structure, including closed chains or composite sub-mechanisms, joint limits and the presence of obstacles. For an illustrative planar case, we demonstrate how the CMP can evaluate a robot’s performance in a cluttered scene and how this evaluation can be extrapolated to obtain a workspace visualization. Additionally, we show the advantages and limitations of the CMP compared to the state of the art. Furthermore, the method is demonstrated both in simulation and experimentally for NASA’s Valkyrie robot. We show how the CMP provides a measure for single-arm and dual-arm manipulation tasks, analyze the workspace and be used to optimize the robot’s posture.","PeriodicalId":312776,"journal":{"name":"Int. J. Humanoid Robotics","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Constrained Manipulability for Humanoid Robots Using Velocity Polytopes\",\"authors\":\"P. Long, T. Padır\",\"doi\":\"10.1142/s0219843619500373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot performance measures are important tools for quantifying the ability to carry out manipulation tasks. Generally, these measures examine the system’s kinematic transformations from configuration to task space. This means that environmental constraints are neglected in spite of the significant effects they may have on the robot’s admissible motions. In this paper, we propose a new measure called the constrained manipulability polytope (CMP) that considers the system’s kinematic structure, including closed chains or composite sub-mechanisms, joint limits and the presence of obstacles. For an illustrative planar case, we demonstrate how the CMP can evaluate a robot’s performance in a cluttered scene and how this evaluation can be extrapolated to obtain a workspace visualization. Additionally, we show the advantages and limitations of the CMP compared to the state of the art. Furthermore, the method is demonstrated both in simulation and experimentally for NASA’s Valkyrie robot. We show how the CMP provides a measure for single-arm and dual-arm manipulation tasks, analyze the workspace and be used to optimize the robot’s posture.\",\"PeriodicalId\":312776,\"journal\":{\"name\":\"Int. J. Humanoid Robotics\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Humanoid Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219843619500373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Humanoid Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219843619500373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

机器人性能测量是量化执行操作任务能力的重要工具。一般来说,这些度量检查系统从配置到任务空间的运动学转换。这意味着环境约束被忽略,尽管它们可能对机器人的可接受运动产生重大影响。在本文中,我们提出了一种新的测量方法,称为约束可操作多面体(CMP),它考虑了系统的运动结构,包括闭链或复合子机构,关节极限和障碍物的存在。对于一个说明性的平面案例,我们演示了CMP如何在混乱的场景中评估机器人的性能,以及如何将这种评估外推以获得工作空间的可视化。此外,我们还展示了与最先进的技术相比,CMP的优点和局限性。最后,对NASA的Valkyrie机器人进行了仿真和实验验证。我们展示了CMP如何为单臂和双臂操作任务提供测量,分析工作空间并用于优化机器人的姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained Manipulability for Humanoid Robots Using Velocity Polytopes
Robot performance measures are important tools for quantifying the ability to carry out manipulation tasks. Generally, these measures examine the system’s kinematic transformations from configuration to task space. This means that environmental constraints are neglected in spite of the significant effects they may have on the robot’s admissible motions. In this paper, we propose a new measure called the constrained manipulability polytope (CMP) that considers the system’s kinematic structure, including closed chains or composite sub-mechanisms, joint limits and the presence of obstacles. For an illustrative planar case, we demonstrate how the CMP can evaluate a robot’s performance in a cluttered scene and how this evaluation can be extrapolated to obtain a workspace visualization. Additionally, we show the advantages and limitations of the CMP compared to the state of the art. Furthermore, the method is demonstrated both in simulation and experimentally for NASA’s Valkyrie robot. We show how the CMP provides a measure for single-arm and dual-arm manipulation tasks, analyze the workspace and be used to optimize the robot’s posture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信