基于独立分量分析的信道选择,实现N200和P300的高性能分类

Wenxuan Li, Mengfan Li, Wei Li
{"title":"基于独立分量分析的信道选择,实现N200和P300的高性能分类","authors":"Wenxuan Li, Mengfan Li, Wei Li","doi":"10.1109/ICCI-CC.2015.7259414","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for achieving a high performance of N200 and P300 classification, which applies independent component analysis (ICA) to select the channels whose brain signals contain large N200 and P300 potentials and small artifacts as the optimal channels to extract the features. The study results show that our method achieves an average accuracy of 99.3% over 4 subjects.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Independent component analysis-based channel selection to achieve high performance of N200 and P300 classification\",\"authors\":\"Wenxuan Li, Mengfan Li, Wei Li\",\"doi\":\"10.1109/ICCI-CC.2015.7259414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for achieving a high performance of N200 and P300 classification, which applies independent component analysis (ICA) to select the channels whose brain signals contain large N200 and P300 potentials and small artifacts as the optimal channels to extract the features. The study results show that our method achieves an average accuracy of 99.3% over 4 subjects.\",\"PeriodicalId\":328695,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2015.7259414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种实现高性能N200和P300分类的方法,该方法采用独立分量分析(ICA)方法选择脑信号中含有较大N200和P300电位和较小伪影的通道作为提取特征的最优通道。研究结果表明,我们的方法在4个受试者中平均准确率达到99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent component analysis-based channel selection to achieve high performance of N200 and P300 classification
This paper proposes a method for achieving a high performance of N200 and P300 classification, which applies independent component analysis (ICA) to select the channels whose brain signals contain large N200 and P300 potentials and small artifacts as the optimal channels to extract the features. The study results show that our method achieves an average accuracy of 99.3% over 4 subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信