正模格的形式背景的性质

S. Shabnam, Ramananda Hs, Harsha Aj
{"title":"正模格的形式背景的性质","authors":"S. Shabnam, Ramananda Hs, Harsha Aj","doi":"10.37418/amsj.11.10.8","DOIUrl":null,"url":null,"abstract":"Let $L$ be a finite Orthomodular Lattice and $T$ be the Formal Context of $L$. Then, considering $T$ as a binary symmetric matrix, we find the determinant of the formal context of the atomic amalgam $B_n+B_m$ of two Boolean algebras $\\mathbf{B_{n}}$ and $\\mathbf{B_{m}}$ consisting of $n$ and $m$ atoms, respectively using the Schur complement formula\\cite{p28}. We present the proofs of some preliminary results on the determinant of the context table of the Boolean algebra $B_{n}$ and the characteristic polynomial of $B_{n}$. These preliminary results are used in many applications in graph theory.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROPERTIES OF THE FORMAL CONTEXT OF ORTHOMODULAR LATTICES\",\"authors\":\"S. Shabnam, Ramananda Hs, Harsha Aj\",\"doi\":\"10.37418/amsj.11.10.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be a finite Orthomodular Lattice and $T$ be the Formal Context of $L$. Then, considering $T$ as a binary symmetric matrix, we find the determinant of the formal context of the atomic amalgam $B_n+B_m$ of two Boolean algebras $\\\\mathbf{B_{n}}$ and $\\\\mathbf{B_{m}}$ consisting of $n$ and $m$ atoms, respectively using the Schur complement formula\\\\cite{p28}. We present the proofs of some preliminary results on the determinant of the context table of the Boolean algebra $B_{n}$ and the characteristic polynomial of $B_{n}$. These preliminary results are used in many applications in graph theory.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.11.10.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.11.10.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$L$为有限正交格,$T$为$L$的形式背景。然后,考虑$T$为二元对称矩阵,我们使用舒尔补公式\cite{p28}分别求出了由$n$和$m$原子组成的两个布尔代数$\mathbf{B_{n}}$和$\mathbf{B_{m}}$的原子银汞合金$B_n+B_m$的形式上下文的行列式。给出了布尔代数$B_{n}$的上下文表的行列式和特征多项式$B_{n}$的一些初步结果的证明。这些初步结果在图论的许多应用中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROPERTIES OF THE FORMAL CONTEXT OF ORTHOMODULAR LATTICES
Let $L$ be a finite Orthomodular Lattice and $T$ be the Formal Context of $L$. Then, considering $T$ as a binary symmetric matrix, we find the determinant of the formal context of the atomic amalgam $B_n+B_m$ of two Boolean algebras $\mathbf{B_{n}}$ and $\mathbf{B_{m}}$ consisting of $n$ and $m$ atoms, respectively using the Schur complement formula\cite{p28}. We present the proofs of some preliminary results on the determinant of the context table of the Boolean algebra $B_{n}$ and the characteristic polynomial of $B_{n}$. These preliminary results are used in many applications in graph theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信