{"title":"用于功能增强设备的二维材料","authors":"P. Gopalan, B. Sensale‐Rodriguez","doi":"10.1049/PBCS039E_CH3","DOIUrl":null,"url":null,"abstract":"The book chapter provides a brief overview of some of the prominent features of non-carbon 2D materials that are currently being investigated and predicted to play significant role in the development of ultrathin electronic and optoelectronic devices in the coming years that could push the boundaries of current CMOS technology.","PeriodicalId":270370,"journal":{"name":"Functionality-Enhanced Devices An alternative to Moore's Law","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional materials for functionality-enhanced devices\",\"authors\":\"P. Gopalan, B. Sensale‐Rodriguez\",\"doi\":\"10.1049/PBCS039E_CH3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The book chapter provides a brief overview of some of the prominent features of non-carbon 2D materials that are currently being investigated and predicted to play significant role in the development of ultrathin electronic and optoelectronic devices in the coming years that could push the boundaries of current CMOS technology.\",\"PeriodicalId\":270370,\"journal\":{\"name\":\"Functionality-Enhanced Devices An alternative to Moore's Law\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functionality-Enhanced Devices An alternative to Moore's Law\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBCS039E_CH3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functionality-Enhanced Devices An alternative to Moore's Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBCS039E_CH3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-dimensional materials for functionality-enhanced devices
The book chapter provides a brief overview of some of the prominent features of non-carbon 2D materials that are currently being investigated and predicted to play significant role in the development of ultrathin electronic and optoelectronic devices in the coming years that could push the boundaries of current CMOS technology.