基于时间序列聚类的TPA-LSTNet模型短期负荷预测方法

Zhuyun Li, Chunchao Hu, Yanxu Zhang, Guo Liang, Zhuolin Huang, Qiran Zhang
{"title":"基于时间序列聚类的TPA-LSTNet模型短期负荷预测方法","authors":"Zhuyun Li, Chunchao Hu, Yanxu Zhang, Guo Liang, Zhuolin Huang, Qiran Zhang","doi":"10.1109/REPE55559.2022.9949388","DOIUrl":null,"url":null,"abstract":"To provide a stronger guarantee for the power system's stable operation, improving the accuracy of short-term load peak prediction is necessary. This paper proposes a short-term load prediction model TPA-LSTNet that combines TPA (Temporal Pattern Attention) and LSTNet and combines the K-Shape time series clustering method. Firstly, collect external information on the corresponding date of the data, such as daily temperature, humidity, wind direction, whether it is a holiday, Etc. Secondly, using the characteristics of high precision and high efficiency of the K-Shape algorithm, cluster analysis is carried out on the electricity load data in the station area. Then combine the data with external information and input it into the TPA-LSTNet model to extract time series features and train the model. Finally, the prediction of short-term power load is realized using the trained model. The predicted results on an existing urban distribution network verify the prediction accuracy of the method.","PeriodicalId":115453,"journal":{"name":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Short-term LOAD Forecasting Method of TPA-LSTNet Model Based on Time Series Clustering\",\"authors\":\"Zhuyun Li, Chunchao Hu, Yanxu Zhang, Guo Liang, Zhuolin Huang, Qiran Zhang\",\"doi\":\"10.1109/REPE55559.2022.9949388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide a stronger guarantee for the power system's stable operation, improving the accuracy of short-term load peak prediction is necessary. This paper proposes a short-term load prediction model TPA-LSTNet that combines TPA (Temporal Pattern Attention) and LSTNet and combines the K-Shape time series clustering method. Firstly, collect external information on the corresponding date of the data, such as daily temperature, humidity, wind direction, whether it is a holiday, Etc. Secondly, using the characteristics of high precision and high efficiency of the K-Shape algorithm, cluster analysis is carried out on the electricity load data in the station area. Then combine the data with external information and input it into the TPA-LSTNet model to extract time series features and train the model. Finally, the prediction of short-term power load is realized using the trained model. The predicted results on an existing urban distribution network verify the prediction accuracy of the method.\",\"PeriodicalId\":115453,\"journal\":{\"name\":\"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REPE55559.2022.9949388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REPE55559.2022.9949388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了给电力系统的稳定运行提供更有力的保障,需要提高短期负荷峰值预测的准确性。本文提出了一种结合TPA (Temporal Pattern Attention)和LSTNet,并结合k形时间序列聚类方法的短期负荷预测模型TPA-LSTNet。首先,收集数据对应日期的外部信息,如每日温度、湿度、风向、是否放假等。其次,利用K-Shape算法高精度、高效率的特点,对站区电力负荷数据进行聚类分析。然后将数据与外部信息结合,输入到TPA-LSTNet模型中,提取时间序列特征并对模型进行训练。最后,利用训练好的模型实现了短期电力负荷的预测。对已有城市配电网的预测结果验证了该方法的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term LOAD Forecasting Method of TPA-LSTNet Model Based on Time Series Clustering
To provide a stronger guarantee for the power system's stable operation, improving the accuracy of short-term load peak prediction is necessary. This paper proposes a short-term load prediction model TPA-LSTNet that combines TPA (Temporal Pattern Attention) and LSTNet and combines the K-Shape time series clustering method. Firstly, collect external information on the corresponding date of the data, such as daily temperature, humidity, wind direction, whether it is a holiday, Etc. Secondly, using the characteristics of high precision and high efficiency of the K-Shape algorithm, cluster analysis is carried out on the electricity load data in the station area. Then combine the data with external information and input it into the TPA-LSTNet model to extract time series features and train the model. Finally, the prediction of short-term power load is realized using the trained model. The predicted results on an existing urban distribution network verify the prediction accuracy of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信