{"title":"东京证券交易所大盘股投资组合多元化的最优控制方法","authors":"Muhammad Jaffar Sadiq Abdullah, N. Ishak","doi":"10.5772/intechopen.100613","DOIUrl":null,"url":null,"abstract":"In this chapter, Markowitz mean-variance approach is proposed for examining the best portfolio diversification strategy within three subperiods which are during the global financial crisis (GFC), post-global financial crisis, and during the non-crisis period. In our approach, we used 10 securities from five different industries to represent a risk-mitigation parameter. In this way, the naive diversification strategy is used to serve as a comparison for the approach used. During the computation process, the correlation matrices revealed that the portfolio risk is not well diversified during non-crisis periods, meanwhile, the variance-covariance matrices indicated that volatility can be minimized during portfolio construction. On this basis, 10 efficient portfolios were constructed and the optimal portfolios were selected in each subperiods based on the risk-averse preference. Performance-wise that optimal portfolio dominated the naïve strategy throughout the three subperiods tested. All the optimal portfolios selected are yielding more returns compared to the naïve portfolio.","PeriodicalId":426434,"journal":{"name":"Control Theory in Engineering [Working Title]","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimal Control Approach to Portfolio Diversification on Large Cap Stocks Traded in Tokyo Stock Exchange\",\"authors\":\"Muhammad Jaffar Sadiq Abdullah, N. Ishak\",\"doi\":\"10.5772/intechopen.100613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, Markowitz mean-variance approach is proposed for examining the best portfolio diversification strategy within three subperiods which are during the global financial crisis (GFC), post-global financial crisis, and during the non-crisis period. In our approach, we used 10 securities from five different industries to represent a risk-mitigation parameter. In this way, the naive diversification strategy is used to serve as a comparison for the approach used. During the computation process, the correlation matrices revealed that the portfolio risk is not well diversified during non-crisis periods, meanwhile, the variance-covariance matrices indicated that volatility can be minimized during portfolio construction. On this basis, 10 efficient portfolios were constructed and the optimal portfolios were selected in each subperiods based on the risk-averse preference. Performance-wise that optimal portfolio dominated the naïve strategy throughout the three subperiods tested. All the optimal portfolios selected are yielding more returns compared to the naïve portfolio.\",\"PeriodicalId\":426434,\"journal\":{\"name\":\"Control Theory in Engineering [Working Title]\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Theory in Engineering [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Theory in Engineering [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optimal Control Approach to Portfolio Diversification on Large Cap Stocks Traded in Tokyo Stock Exchange
In this chapter, Markowitz mean-variance approach is proposed for examining the best portfolio diversification strategy within three subperiods which are during the global financial crisis (GFC), post-global financial crisis, and during the non-crisis period. In our approach, we used 10 securities from five different industries to represent a risk-mitigation parameter. In this way, the naive diversification strategy is used to serve as a comparison for the approach used. During the computation process, the correlation matrices revealed that the portfolio risk is not well diversified during non-crisis periods, meanwhile, the variance-covariance matrices indicated that volatility can be minimized during portfolio construction. On this basis, 10 efficient portfolios were constructed and the optimal portfolios were selected in each subperiods based on the risk-averse preference. Performance-wise that optimal portfolio dominated the naïve strategy throughout the three subperiods tested. All the optimal portfolios selected are yielding more returns compared to the naïve portfolio.