{"title":"受蚯蚓启发的多模态软执行器","authors":"Jonathan Tirado, Jonas Jørgensen, A. Rafsanjani","doi":"10.1109/RoboSoft55895.2023.10122032","DOIUrl":null,"url":null,"abstract":"Earthworms can crawl on the ground and burrow through the soil through the sequential actuation of two types of muscles. The elongated soft body of an earthworm extends by contraction of circularly arranged external muscles and swells by contraction of longitudinally oriented muscles. Despite their slow movement, earthworms offer a rich model for developing next-generation limbless soft robots for many applications, including automated sensing of soil properties and microbiomes, gastrointestinal tract endoscopy, and sewer pipe inspection. Here, we take inspiration from the interwoven morphology of earthworms' musculature to create a multimodal soft actuator. We devised a prototyping technique for fabricating composite pneumatic actuators by coiling prestretched inflatable tubes around a cylindrical soft actuator at varying tension. We conducted comprehensive experiments and characterized the evolution of pressure and elongation of these multimodal actu-ators while inflating the inner and outer actuators in various sequential orders. Finally, we harnessed one of the identified actuation sequences to achieve in-pipe locomotion.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthworm-inspired multimodal soft actuators\",\"authors\":\"Jonathan Tirado, Jonas Jørgensen, A. Rafsanjani\",\"doi\":\"10.1109/RoboSoft55895.2023.10122032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthworms can crawl on the ground and burrow through the soil through the sequential actuation of two types of muscles. The elongated soft body of an earthworm extends by contraction of circularly arranged external muscles and swells by contraction of longitudinally oriented muscles. Despite their slow movement, earthworms offer a rich model for developing next-generation limbless soft robots for many applications, including automated sensing of soil properties and microbiomes, gastrointestinal tract endoscopy, and sewer pipe inspection. Here, we take inspiration from the interwoven morphology of earthworms' musculature to create a multimodal soft actuator. We devised a prototyping technique for fabricating composite pneumatic actuators by coiling prestretched inflatable tubes around a cylindrical soft actuator at varying tension. We conducted comprehensive experiments and characterized the evolution of pressure and elongation of these multimodal actu-ators while inflating the inner and outer actuators in various sequential orders. Finally, we harnessed one of the identified actuation sequences to achieve in-pipe locomotion.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10122032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Earthworms can crawl on the ground and burrow through the soil through the sequential actuation of two types of muscles. The elongated soft body of an earthworm extends by contraction of circularly arranged external muscles and swells by contraction of longitudinally oriented muscles. Despite their slow movement, earthworms offer a rich model for developing next-generation limbless soft robots for many applications, including automated sensing of soil properties and microbiomes, gastrointestinal tract endoscopy, and sewer pipe inspection. Here, we take inspiration from the interwoven morphology of earthworms' musculature to create a multimodal soft actuator. We devised a prototyping technique for fabricating composite pneumatic actuators by coiling prestretched inflatable tubes around a cylindrical soft actuator at varying tension. We conducted comprehensive experiments and characterized the evolution of pressure and elongation of these multimodal actu-ators while inflating the inner and outer actuators in various sequential orders. Finally, we harnessed one of the identified actuation sequences to achieve in-pipe locomotion.