视频帧中阿拉伯语文本的检测与识别

W. Ohyama, Seiya Iwata, T. Wakabayashi, F. Kimura
{"title":"视频帧中阿拉伯语文本的检测与识别","authors":"W. Ohyama, Seiya Iwata, T. Wakabayashi, F. Kimura","doi":"10.1109/ICDAR.2017.360","DOIUrl":null,"url":null,"abstract":"The authors have developed an end-to-end system for Arabic text recognition in video frames. The end-to-end system consists of the steps for text-line detection, word segmentation and word recognition. In order to achieve high text recognition accuracy we propose a new scheme of integrated text detection-recognition scheme, where the true text-lines are detected with as higher recall rate as possible and the false words in the false lines are rejected in the successive word recognition step. We reported a recognition based transition frame detection of Arabic news captions in single channel video images. In this paper the recognition system is integrated with n-gram language model and extended to text detection/recognition of multi-channel video images. The multi-channel, multi-font performance of the system is experimentally evaluated using AcTiV-D and AcTiV-R dataset. The multi-channel text detection performance for three channels, France24, Russia Today and TunisiaNat1 is 91.29% in (F)-measure. The multi-channel, multi-font character recognition performance for these channels is 94.84% in F-measure.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection and Recognition of Arabic Text in Video Frames\",\"authors\":\"W. Ohyama, Seiya Iwata, T. Wakabayashi, F. Kimura\",\"doi\":\"10.1109/ICDAR.2017.360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have developed an end-to-end system for Arabic text recognition in video frames. The end-to-end system consists of the steps for text-line detection, word segmentation and word recognition. In order to achieve high text recognition accuracy we propose a new scheme of integrated text detection-recognition scheme, where the true text-lines are detected with as higher recall rate as possible and the false words in the false lines are rejected in the successive word recognition step. We reported a recognition based transition frame detection of Arabic news captions in single channel video images. In this paper the recognition system is integrated with n-gram language model and extended to text detection/recognition of multi-channel video images. The multi-channel, multi-font performance of the system is experimentally evaluated using AcTiV-D and AcTiV-R dataset. The multi-channel text detection performance for three channels, France24, Russia Today and TunisiaNat1 is 91.29% in (F)-measure. The multi-channel, multi-font character recognition performance for these channels is 94.84% in F-measure.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

作者开发了一个端到端的系统,用于视频帧中的阿拉伯语文本识别。端到端系统包括文本行检测、分词和词识别三个步骤。为了达到较高的文本识别准确率,本文提出了一种综合文本检测-识别方案,该方案以尽可能高的召回率检测出真实的文本行,并在后续的单词识别步骤中剔除假行中的假单词。我们报道了一种基于识别的单通道视频图像中阿拉伯语新闻字幕的过渡帧检测方法。本文将该识别系统与n-gram语言模型相结合,并将其扩展到多通道视频图像的文本检测/识别。利用AcTiV-D和AcTiV-R数据集对系统的多通道、多字体性能进行了实验评估。France24、Russia Today和TunisiaNat1三个频道的多通道文本检测性能为91.29% (F)-measure。这些通道的多通道、多字体字符识别性能在F-measure中为94.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Recognition of Arabic Text in Video Frames
The authors have developed an end-to-end system for Arabic text recognition in video frames. The end-to-end system consists of the steps for text-line detection, word segmentation and word recognition. In order to achieve high text recognition accuracy we propose a new scheme of integrated text detection-recognition scheme, where the true text-lines are detected with as higher recall rate as possible and the false words in the false lines are rejected in the successive word recognition step. We reported a recognition based transition frame detection of Arabic news captions in single channel video images. In this paper the recognition system is integrated with n-gram language model and extended to text detection/recognition of multi-channel video images. The multi-channel, multi-font performance of the system is experimentally evaluated using AcTiV-D and AcTiV-R dataset. The multi-channel text detection performance for three channels, France24, Russia Today and TunisiaNat1 is 91.29% in (F)-measure. The multi-channel, multi-font character recognition performance for these channels is 94.84% in F-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信