使用深度学习技术的可见光通信

Priti G. Pachpande, Monette H. Khadr, A. F. Hussein, H. Elgala
{"title":"使用深度学习技术的可见光通信","authors":"Priti G. Pachpande, Monette H. Khadr, A. F. Hussein, H. Elgala","doi":"10.1109/SARNOF.2018.8720493","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) techniques have the potential of making communication systems more efficient and solving many problems in the physical layer. In this paper, an optical wireless communications (OWC) system based on visible light communications (VLC) technology is implemented using an autoencoder (AE). The proposed system is tested in different scenarios using various AE parameters and applied on an indoor VLC model. Bit error rate (BER) is evaluated with respect to the signal-to-noise-ratio (SNR) values at different locations within the room. To validate the proposed system, theoretical results are compared to the simulated values. The bit-error performance demonstrates the viability of DL techniques in VLC systems.","PeriodicalId":430928,"journal":{"name":"2018 IEEE 39th Sarnoff Symposium","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Visible Light Communication Using Deep Learning Techniques\",\"authors\":\"Priti G. Pachpande, Monette H. Khadr, A. F. Hussein, H. Elgala\",\"doi\":\"10.1109/SARNOF.2018.8720493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) techniques have the potential of making communication systems more efficient and solving many problems in the physical layer. In this paper, an optical wireless communications (OWC) system based on visible light communications (VLC) technology is implemented using an autoencoder (AE). The proposed system is tested in different scenarios using various AE parameters and applied on an indoor VLC model. Bit error rate (BER) is evaluated with respect to the signal-to-noise-ratio (SNR) values at different locations within the room. To validate the proposed system, theoretical results are compared to the simulated values. The bit-error performance demonstrates the viability of DL techniques in VLC systems.\",\"PeriodicalId\":430928,\"journal\":{\"name\":\"2018 IEEE 39th Sarnoff Symposium\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 39th Sarnoff Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SARNOF.2018.8720493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 39th Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2018.8720493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

深度学习(DL)技术具有提高通信系统效率和解决物理层许多问题的潜力。本文采用自编码器(AE)实现了一种基于可见光通信(VLC)技术的光无线通信(OWC)系统。该系统在不同场景下使用不同的声发射参数进行了测试,并应用于室内VLC模型。误码率(BER)是根据房间内不同位置的信噪比(SNR)值来评估的。为了验证所提出的系统,将理论结果与仿真值进行了比较。误码性能证明了深度学习技术在VLC系统中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visible Light Communication Using Deep Learning Techniques
Deep learning (DL) techniques have the potential of making communication systems more efficient and solving many problems in the physical layer. In this paper, an optical wireless communications (OWC) system based on visible light communications (VLC) technology is implemented using an autoencoder (AE). The proposed system is tested in different scenarios using various AE parameters and applied on an indoor VLC model. Bit error rate (BER) is evaluated with respect to the signal-to-noise-ratio (SNR) values at different locations within the room. To validate the proposed system, theoretical results are compared to the simulated values. The bit-error performance demonstrates the viability of DL techniques in VLC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信