基于动态时间扭曲和隐马尔可夫模型的马来语孤立数字识别决策融合

Syed Abdul Rahman Al-Haddad, S. Samad, Aini Hussain, K. A. Ishak, Hamid Mirvaziri
{"title":"基于动态时间扭曲和隐马尔可夫模型的马来语孤立数字识别决策融合","authors":"Syed Abdul Rahman Al-Haddad, S. Samad, Aini Hussain, K. A. Ishak, Hamid Mirvaziri","doi":"10.1109/SCORED.2007.4451425","DOIUrl":null,"url":null,"abstract":"This paper is focused on Malay speech recognition with the intention to introduce a decision fusion technique for isolated Malay digit recognition using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). This study proposes an algorithm for decision fusion of the recognition models. The endpoint detection, framing, normalization, Mel Frequency Cepstral Coefficient (MFCC) and vector quantization techniques are used to process speech samples to accomplish the recognition. Decision fusion technique is then used to combine the results of DTW and HMM. The algorithm is tested on speech samples that is a part of a Malay corpus.","PeriodicalId":443652,"journal":{"name":"2007 5th Student Conference on Research and Development","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Decision Fusion for Isolated Malay Digit Recognition Using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM)\",\"authors\":\"Syed Abdul Rahman Al-Haddad, S. Samad, Aini Hussain, K. A. Ishak, Hamid Mirvaziri\",\"doi\":\"10.1109/SCORED.2007.4451425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on Malay speech recognition with the intention to introduce a decision fusion technique for isolated Malay digit recognition using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). This study proposes an algorithm for decision fusion of the recognition models. The endpoint detection, framing, normalization, Mel Frequency Cepstral Coefficient (MFCC) and vector quantization techniques are used to process speech samples to accomplish the recognition. Decision fusion technique is then used to combine the results of DTW and HMM. The algorithm is tested on speech samples that is a part of a Malay corpus.\",\"PeriodicalId\":443652,\"journal\":{\"name\":\"2007 5th Student Conference on Research and Development\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 5th Student Conference on Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2007.4451425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th Student Conference on Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2007.4451425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文以马来语语音识别为研究对象,提出了一种基于动态时间扭曲(DTW)和隐马尔可夫模型(HMM)的马来语数字识别决策融合技术。本文提出了一种识别模型的决策融合算法。采用端点检测、分帧、归一化、Mel频率倒谱系数(MFCC)和矢量量化等技术对语音样本进行处理,完成识别。然后使用决策融合技术将DTW和HMM的结果结合起来。该算法在马来语语料库的一部分语音样本上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision Fusion for Isolated Malay Digit Recognition Using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM)
This paper is focused on Malay speech recognition with the intention to introduce a decision fusion technique for isolated Malay digit recognition using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). This study proposes an algorithm for decision fusion of the recognition models. The endpoint detection, framing, normalization, Mel Frequency Cepstral Coefficient (MFCC) and vector quantization techniques are used to process speech samples to accomplish the recognition. Decision fusion technique is then used to combine the results of DTW and HMM. The algorithm is tested on speech samples that is a part of a Malay corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信