太阳能汽轮机高压内壳启动性能的数值研究

Peng Wang, Gang Chen, Wenfu Li
{"title":"太阳能汽轮机高压内壳启动性能的数值研究","authors":"Peng Wang, Gang Chen, Wenfu Li","doi":"10.1115/PVP2018-84418","DOIUrl":null,"url":null,"abstract":"Operation flexibility and the high efficiency of thermal cycle are the two hot research topics for the steam turbine unit. For the operation flexibility, it requires the turbine unit be able to start up quickly and frequently, and good thermal fatigue properties of the components are a must. On the other hand, the trend to higher temperature with ultra supercritical (USC) steam is the key drive of ongoing development for the validation of a method to improve the thermal cycle efficiency, but the application of the higher steam temperature will intensify the component’s thermal fatigue.\n In this paper, a high pressure inner casing for the new designed solar steam turbine was studied, and the Finite Element Method (FEM) combined with linear elastic material was applied to simulate the transient stress and temperature fields during the daily warm/hot startup process. On the basis of the stress spectrum in the critical zone, the standard DIN EN-12952-3 and the fatigue curve were used to evaluate the low cycle fatigue life consumption in the transient process.","PeriodicalId":384066,"journal":{"name":"Volume 3B: Design and Analysis","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on the Startup Performance for the High Pressure Inner Casing of the Solar Steam Turbine\",\"authors\":\"Peng Wang, Gang Chen, Wenfu Li\",\"doi\":\"10.1115/PVP2018-84418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operation flexibility and the high efficiency of thermal cycle are the two hot research topics for the steam turbine unit. For the operation flexibility, it requires the turbine unit be able to start up quickly and frequently, and good thermal fatigue properties of the components are a must. On the other hand, the trend to higher temperature with ultra supercritical (USC) steam is the key drive of ongoing development for the validation of a method to improve the thermal cycle efficiency, but the application of the higher steam temperature will intensify the component’s thermal fatigue.\\n In this paper, a high pressure inner casing for the new designed solar steam turbine was studied, and the Finite Element Method (FEM) combined with linear elastic material was applied to simulate the transient stress and temperature fields during the daily warm/hot startup process. On the basis of the stress spectrum in the critical zone, the standard DIN EN-12952-3 and the fatigue curve were used to evaluate the low cycle fatigue life consumption in the transient process.\",\"PeriodicalId\":384066,\"journal\":{\"name\":\"Volume 3B: Design and Analysis\",\"volume\":\"249 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3B: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

运行灵活性和热循环的高效性是汽轮机组研究的两个热点。对于运行灵活性,要求汽轮机组能够快速频繁地启动,并且部件必须具有良好的热疲劳性能。另一方面,超超临界(USC)蒸汽向更高温度的发展趋势是提高热循环效率方法验证的关键驱动力,但更高蒸汽温度的应用将加剧部件的热疲劳。以新设计的太阳能汽轮机高压内壳为研究对象,采用有限单元法结合线弹性材料对其日常热/热启动过程中的瞬态应力场和温度场进行了数值模拟。在临界区应力谱的基础上,采用DIN EN-12952-3标准和疲劳曲线对瞬态过程的低周疲劳寿命消耗进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study on the Startup Performance for the High Pressure Inner Casing of the Solar Steam Turbine
Operation flexibility and the high efficiency of thermal cycle are the two hot research topics for the steam turbine unit. For the operation flexibility, it requires the turbine unit be able to start up quickly and frequently, and good thermal fatigue properties of the components are a must. On the other hand, the trend to higher temperature with ultra supercritical (USC) steam is the key drive of ongoing development for the validation of a method to improve the thermal cycle efficiency, but the application of the higher steam temperature will intensify the component’s thermal fatigue. In this paper, a high pressure inner casing for the new designed solar steam turbine was studied, and the Finite Element Method (FEM) combined with linear elastic material was applied to simulate the transient stress and temperature fields during the daily warm/hot startup process. On the basis of the stress spectrum in the critical zone, the standard DIN EN-12952-3 and the fatigue curve were used to evaluate the low cycle fatigue life consumption in the transient process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信