多优化器和数据增强对TensorFlow卷积神经网络性能的影响

A. M. Taqi, AhmedM.El Awad, Fadwa Al-Azzo, M. Milanova
{"title":"多优化器和数据增强对TensorFlow卷积神经网络性能的影响","authors":"A. M. Taqi, AhmedM.El Awad, Fadwa Al-Azzo, M. Milanova","doi":"10.1109/MIPR.2018.00032","DOIUrl":null,"url":null,"abstract":"This paper introduces a new methodology for Alzheimer disease (AD) classification based on TensorFlow Convolu-tional Neural Network (TF-CNN). The network consists of three convolutional layers to extract AD features, a flatten-ing layer to reduce dimensionality, and two fully connected layers to classify the extracted features. The whole purpose of TensorFlow is to have a computational graph. To boost the classification performance, two main con-tributions have been done: data augmentation and multi-optimizers. The data augmentation helps to decrease over-fitting and increase the performance of the model. The training dataset images are augmented by normalizing, rotating, and cropping them. Four different optimizers are used with the TF-CNN, Adagrad, ProximalAdagrad, Adam, and RMSProp to achieve accurate classification. The re-sult demonstrates that the loss value of the Adam and RMSProp optimizers was lower than the Adagrad and ProximalAdagrad optimizers. The classification accuracy using Adam optimizer is 95.8%, while it reaches 100% when using RMSProp optimizer.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"The Impact of Multi-Optimizers and Data Augmentation on TensorFlow Convolutional Neural Network Performance\",\"authors\":\"A. M. Taqi, AhmedM.El Awad, Fadwa Al-Azzo, M. Milanova\",\"doi\":\"10.1109/MIPR.2018.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new methodology for Alzheimer disease (AD) classification based on TensorFlow Convolu-tional Neural Network (TF-CNN). The network consists of three convolutional layers to extract AD features, a flatten-ing layer to reduce dimensionality, and two fully connected layers to classify the extracted features. The whole purpose of TensorFlow is to have a computational graph. To boost the classification performance, two main con-tributions have been done: data augmentation and multi-optimizers. The data augmentation helps to decrease over-fitting and increase the performance of the model. The training dataset images are augmented by normalizing, rotating, and cropping them. Four different optimizers are used with the TF-CNN, Adagrad, ProximalAdagrad, Adam, and RMSProp to achieve accurate classification. The re-sult demonstrates that the loss value of the Adam and RMSProp optimizers was lower than the Adagrad and ProximalAdagrad optimizers. The classification accuracy using Adam optimizer is 95.8%, while it reaches 100% when using RMSProp optimizer.\",\"PeriodicalId\":320000,\"journal\":{\"name\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR.2018.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

介绍了一种基于TensorFlow卷积神经网络(TF-CNN)的阿尔茨海默病(AD)分类新方法。该网络由三个卷积层(用于提取AD特征)、一个平坦层(用于降维)和两个完全连接层(用于对提取的特征进行分类)组成。TensorFlow的全部目的是有一个计算图。为了提高分类性能,已经做了两个主要贡献:数据增强和多优化器。数据增强有助于减少过拟合,提高模型的性能。通过规范化、旋转和裁剪来增强训练数据集图像。TF-CNN、Adagrad、ProximalAdagrad、Adam和RMSProp使用了四种不同的优化器来实现准确的分类。结果表明,Adam和RMSProp优化器的损失值低于Adagrad和ProximalAdagrad优化器。使用Adam优化器的分类准确率为95.8%,而使用RMSProp优化器的分类准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Multi-Optimizers and Data Augmentation on TensorFlow Convolutional Neural Network Performance
This paper introduces a new methodology for Alzheimer disease (AD) classification based on TensorFlow Convolu-tional Neural Network (TF-CNN). The network consists of three convolutional layers to extract AD features, a flatten-ing layer to reduce dimensionality, and two fully connected layers to classify the extracted features. The whole purpose of TensorFlow is to have a computational graph. To boost the classification performance, two main con-tributions have been done: data augmentation and multi-optimizers. The data augmentation helps to decrease over-fitting and increase the performance of the model. The training dataset images are augmented by normalizing, rotating, and cropping them. Four different optimizers are used with the TF-CNN, Adagrad, ProximalAdagrad, Adam, and RMSProp to achieve accurate classification. The re-sult demonstrates that the loss value of the Adam and RMSProp optimizers was lower than the Adagrad and ProximalAdagrad optimizers. The classification accuracy using Adam optimizer is 95.8%, while it reaches 100% when using RMSProp optimizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信