{"title":"Sim-Watchdog:利用时间相似性在动态图中进行异常检测","authors":"Guanhua Yan, S. Eidenbenz","doi":"10.1109/ICDCS.2014.24","DOIUrl":null,"url":null,"abstract":"Graphs are widely used to characterize relationships or information flows among entities in large networks or distributed systems. In this work, we propose a systematic framework that leverages temporal similarity inherent in dynamic graphs for anomaly detection. This framework relies on the Neyman-Pearson criterion to choose similarity measures with high discriminative power for online anomaly detection in dynamic graphs. We formulate the problem rigorously, and after establishing its inapproximibility result, we develop a greedy algorithm for similarity measure selection. We apply this framework to dynamic graphs generated from email communications among thousands of employees in a large research institution and demonstrate that it works effectively on a set of more than 100 candidate graph similarity measures.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sim-Watchdog: Leveraging Temporal Similarity for Anomaly Detection in Dynamic Graphs\",\"authors\":\"Guanhua Yan, S. Eidenbenz\",\"doi\":\"10.1109/ICDCS.2014.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs are widely used to characterize relationships or information flows among entities in large networks or distributed systems. In this work, we propose a systematic framework that leverages temporal similarity inherent in dynamic graphs for anomaly detection. This framework relies on the Neyman-Pearson criterion to choose similarity measures with high discriminative power for online anomaly detection in dynamic graphs. We formulate the problem rigorously, and after establishing its inapproximibility result, we develop a greedy algorithm for similarity measure selection. We apply this framework to dynamic graphs generated from email communications among thousands of employees in a large research institution and demonstrate that it works effectively on a set of more than 100 candidate graph similarity measures.\",\"PeriodicalId\":170186,\"journal\":{\"name\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2014.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sim-Watchdog: Leveraging Temporal Similarity for Anomaly Detection in Dynamic Graphs
Graphs are widely used to characterize relationships or information flows among entities in large networks or distributed systems. In this work, we propose a systematic framework that leverages temporal similarity inherent in dynamic graphs for anomaly detection. This framework relies on the Neyman-Pearson criterion to choose similarity measures with high discriminative power for online anomaly detection in dynamic graphs. We formulate the problem rigorously, and after establishing its inapproximibility result, we develop a greedy algorithm for similarity measure selection. We apply this framework to dynamic graphs generated from email communications among thousands of employees in a large research institution and demonstrate that it works effectively on a set of more than 100 candidate graph similarity measures.