{"title":"具有Hebbian学习的自适应尖峰神经网络","authors":"L. Long","doi":"10.1109/EAIS.2011.5945923","DOIUrl":null,"url":null,"abstract":"This paper will describe a numerical approach to simulating biologically-plausible spiking neural networks. These are time dependent neural networks with realistic models for the neurons (Hodgkin-Huxley). In addition the learning is biologically plausible as well, being a Hebbian approach based on spike timing dependent plasticity (STDP). To make the approach very general and flexible, neurogenesis and synaptogenesis have been implemented, which allows the code to automatically add or remove neurons (or synapses) as required.","PeriodicalId":243348,"journal":{"name":"2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An adaptive spiking neural network with Hebbian learning\",\"authors\":\"L. Long\",\"doi\":\"10.1109/EAIS.2011.5945923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will describe a numerical approach to simulating biologically-plausible spiking neural networks. These are time dependent neural networks with realistic models for the neurons (Hodgkin-Huxley). In addition the learning is biologically plausible as well, being a Hebbian approach based on spike timing dependent plasticity (STDP). To make the approach very general and flexible, neurogenesis and synaptogenesis have been implemented, which allows the code to automatically add or remove neurons (or synapses) as required.\",\"PeriodicalId\":243348,\"journal\":{\"name\":\"2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2011.5945923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2011.5945923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive spiking neural network with Hebbian learning
This paper will describe a numerical approach to simulating biologically-plausible spiking neural networks. These are time dependent neural networks with realistic models for the neurons (Hodgkin-Huxley). In addition the learning is biologically plausible as well, being a Hebbian approach based on spike timing dependent plasticity (STDP). To make the approach very general and flexible, neurogenesis and synaptogenesis have been implemented, which allows the code to automatically add or remove neurons (or synapses) as required.