基于内容的支持向量机和独立分量分析音频分类

Jia-Ching Wang, Jhing-Fa Wang, Cai-Bei Lin, Kun-Ting Jian, Wai-He Kuok
{"title":"基于内容的支持向量机和独立分量分析音频分类","authors":"Jia-Ching Wang, Jhing-Fa Wang, Cai-Bei Lin, Kun-Ting Jian, Wai-He Kuok","doi":"10.1109/ICPR.2006.407","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new audio classification system. First, a frame-based multiclass support vector machine (SVM) for audio classification is proposed. The accuracy rate has significant improvements over conventional file-based SVM audio classifier. In feature selection, this study transforms the log powers of the critical-band filters based on independent component analysis (ICA). This new audio feature is combined with mel-frequency cepstral coefficients (MFCCs) and five perceptual features to form an audio feature set. The superiority of the proposed system has been demonstrated via a 15-class sound database with a 91.7% accuracy rate","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Content-Based Audio Classification Using Support Vector Machines and Independent Component Analysis\",\"authors\":\"Jia-Ching Wang, Jhing-Fa Wang, Cai-Bei Lin, Kun-Ting Jian, Wai-He Kuok\",\"doi\":\"10.1109/ICPR.2006.407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new audio classification system. First, a frame-based multiclass support vector machine (SVM) for audio classification is proposed. The accuracy rate has significant improvements over conventional file-based SVM audio classifier. In feature selection, this study transforms the log powers of the critical-band filters based on independent component analysis (ICA). This new audio feature is combined with mel-frequency cepstral coefficients (MFCCs) and five perceptual features to form an audio feature set. The superiority of the proposed system has been demonstrated via a 15-class sound database with a 91.7% accuracy rate\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种新的音频分类系统。首先,提出了一种基于帧的多类支持向量机音频分类方法。与传统的基于文件的SVM音频分类器相比,准确率有显著提高。在特征选择方面,本文基于独立分量分析(ICA)对关键波段滤波器的对数幂进行变换。这种新的音频特征与mel-frequency倒谱系数(MFCCs)和五个感知特征相结合,形成一个音频特征集。通过对15类声音数据库的分析,证明了该系统的优越性,准确率达到91.7%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-Based Audio Classification Using Support Vector Machines and Independent Component Analysis
In this paper, we present a new audio classification system. First, a frame-based multiclass support vector machine (SVM) for audio classification is proposed. The accuracy rate has significant improvements over conventional file-based SVM audio classifier. In feature selection, this study transforms the log powers of the critical-band filters based on independent component analysis (ICA). This new audio feature is combined with mel-frequency cepstral coefficients (MFCCs) and five perceptual features to form an audio feature set. The superiority of the proposed system has been demonstrated via a 15-class sound database with a 91.7% accuracy rate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信