{"title":"主题演讲1:大规模高效深度神经网络训练:从算法到硬件","authors":"Gennady Pekhimenko","doi":"10.1109/IPDPSW55747.2022.00219","DOIUrl":null,"url":null,"abstract":"The recent popularity of deep neural networks (DNNs) has generated a lot of research interest in performing DNN-related computation efficiently. However, the primary focus of systems research is usually quite narrow and limited to inference (i.e., how to efficiently execute already trained models) and image classification networks as the primary benchmark for evaluation. In this talk, we will demonstrate a holistic approach to DNN training acceleration and scalability starting from the algorithm, to software and hardware optimizations, to special development and optimization tools.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote Talk 1: Efficient DNN Training at Scale: from Algorithms to Hardware\",\"authors\":\"Gennady Pekhimenko\",\"doi\":\"10.1109/IPDPSW55747.2022.00219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent popularity of deep neural networks (DNNs) has generated a lot of research interest in performing DNN-related computation efficiently. However, the primary focus of systems research is usually quite narrow and limited to inference (i.e., how to efficiently execute already trained models) and image classification networks as the primary benchmark for evaluation. In this talk, we will demonstrate a holistic approach to DNN training acceleration and scalability starting from the algorithm, to software and hardware optimizations, to special development and optimization tools.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Keynote Talk 1: Efficient DNN Training at Scale: from Algorithms to Hardware
The recent popularity of deep neural networks (DNNs) has generated a lot of research interest in performing DNN-related computation efficiently. However, the primary focus of systems research is usually quite narrow and limited to inference (i.e., how to efficiently execute already trained models) and image classification networks as the primary benchmark for evaluation. In this talk, we will demonstrate a holistic approach to DNN training acceleration and scalability starting from the algorithm, to software and hardware optimizations, to special development and optimization tools.