Maria Chiara Capatti, S. Carbonari, F. Gara, D. Roia, F. Dezi
{"title":"仪器微桩试验研究","authors":"Maria Chiara Capatti, S. Carbonari, F. Gara, D. Roia, F. Dezi","doi":"10.1109/EESMS.2016.7504831","DOIUrl":null,"url":null,"abstract":"In the present work, first steps of an extensive experimental study carried out on two vertical micropiles in alluvial silty soil are presented. One of the vertical micropiles is injected throughout valves a-manchèttes placed along the steel core of the shaft, while the other one is grouted with a unique global injection. Both of them are instrumented with several strain gauges along the shaft and an accelerometer at the head. The protection technique adopted to prevent damages on the strain gauges during micropile installation and high-pressure injections is also discussed. The main objectives of this experimental campaign are the monitoring of the modifications in the dynamic characteristics of the complex soil-micropile system due to execution techniques and construction stages, and the investigation of the dynamic response considering different kind of cyclic and dynamic loading. In particular, the effect of the high-pressure injections on the dynamic response of vertical micropiles is here investigated, by means of series of ambient vibrations and lateral impact loading tests. Experimental data of impact load tests are finally compared with results obtained from an analytical model.","PeriodicalId":262720,"journal":{"name":"2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS)","volume":"14 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental study on instrumented micropiles\",\"authors\":\"Maria Chiara Capatti, S. Carbonari, F. Gara, D. Roia, F. Dezi\",\"doi\":\"10.1109/EESMS.2016.7504831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, first steps of an extensive experimental study carried out on two vertical micropiles in alluvial silty soil are presented. One of the vertical micropiles is injected throughout valves a-manchèttes placed along the steel core of the shaft, while the other one is grouted with a unique global injection. Both of them are instrumented with several strain gauges along the shaft and an accelerometer at the head. The protection technique adopted to prevent damages on the strain gauges during micropile installation and high-pressure injections is also discussed. The main objectives of this experimental campaign are the monitoring of the modifications in the dynamic characteristics of the complex soil-micropile system due to execution techniques and construction stages, and the investigation of the dynamic response considering different kind of cyclic and dynamic loading. In particular, the effect of the high-pressure injections on the dynamic response of vertical micropiles is here investigated, by means of series of ambient vibrations and lateral impact loading tests. Experimental data of impact load tests are finally compared with results obtained from an analytical model.\",\"PeriodicalId\":262720,\"journal\":{\"name\":\"2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS)\",\"volume\":\"14 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EESMS.2016.7504831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESMS.2016.7504831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the present work, first steps of an extensive experimental study carried out on two vertical micropiles in alluvial silty soil are presented. One of the vertical micropiles is injected throughout valves a-manchèttes placed along the steel core of the shaft, while the other one is grouted with a unique global injection. Both of them are instrumented with several strain gauges along the shaft and an accelerometer at the head. The protection technique adopted to prevent damages on the strain gauges during micropile installation and high-pressure injections is also discussed. The main objectives of this experimental campaign are the monitoring of the modifications in the dynamic characteristics of the complex soil-micropile system due to execution techniques and construction stages, and the investigation of the dynamic response considering different kind of cyclic and dynamic loading. In particular, the effect of the high-pressure injections on the dynamic response of vertical micropiles is here investigated, by means of series of ambient vibrations and lateral impact loading tests. Experimental data of impact load tests are finally compared with results obtained from an analytical model.