Uriel Martinez-Hernandez, Adrian Rubio Solis, A. Dehghani
{"title":"基于CNN和一阶MC策略的步行活动识别与步态周期预测","authors":"Uriel Martinez-Hernandez, Adrian Rubio Solis, A. Dehghani","doi":"10.1109/BIOROB.2018.8487220","DOIUrl":null,"url":null,"abstract":"In this paper, a strategy for recognition of human walking activities and prediction of gait periods using wearable sensors is presented. First, a Convolutional Neural Network (CNN) is developed for the recognition of three walking activities (level-ground walking, ramp ascent and descent) and recognition of gait periods. Second, a first-order Markov Chain (MC) is employed for the prediction of gait periods, based on the observation of decisions made by the CNN for each walking activity. The validation of the proposed methods is performed using data from three inertial measurement units (IMU) attached to the lower limbs of participants. The results show that the CNN, together with the first-order MC, achieves mean accuracies of 100% and 98.32% for recognition of walking activities and gait periods, respectively. Prediction of gait periods are achieved with mean accuracies of 99.78%, 97.56% and 97.35% during level-ground walking, ramp ascent and descent, respectively. Overall, the benefits of our work for accurate recognition and prediction of walking activity and gait periods, make it a suitable high-level method for the development of intelligent assistive robots.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Recognition of Walking Activity and Prediction of Gait Periods with a CNN and First-Order MC Strategy\",\"authors\":\"Uriel Martinez-Hernandez, Adrian Rubio Solis, A. Dehghani\",\"doi\":\"10.1109/BIOROB.2018.8487220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a strategy for recognition of human walking activities and prediction of gait periods using wearable sensors is presented. First, a Convolutional Neural Network (CNN) is developed for the recognition of three walking activities (level-ground walking, ramp ascent and descent) and recognition of gait periods. Second, a first-order Markov Chain (MC) is employed for the prediction of gait periods, based on the observation of decisions made by the CNN for each walking activity. The validation of the proposed methods is performed using data from three inertial measurement units (IMU) attached to the lower limbs of participants. The results show that the CNN, together with the first-order MC, achieves mean accuracies of 100% and 98.32% for recognition of walking activities and gait periods, respectively. Prediction of gait periods are achieved with mean accuracies of 99.78%, 97.56% and 97.35% during level-ground walking, ramp ascent and descent, respectively. Overall, the benefits of our work for accurate recognition and prediction of walking activity and gait periods, make it a suitable high-level method for the development of intelligent assistive robots.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognition of Walking Activity and Prediction of Gait Periods with a CNN and First-Order MC Strategy
In this paper, a strategy for recognition of human walking activities and prediction of gait periods using wearable sensors is presented. First, a Convolutional Neural Network (CNN) is developed for the recognition of three walking activities (level-ground walking, ramp ascent and descent) and recognition of gait periods. Second, a first-order Markov Chain (MC) is employed for the prediction of gait periods, based on the observation of decisions made by the CNN for each walking activity. The validation of the proposed methods is performed using data from three inertial measurement units (IMU) attached to the lower limbs of participants. The results show that the CNN, together with the first-order MC, achieves mean accuracies of 100% and 98.32% for recognition of walking activities and gait periods, respectively. Prediction of gait periods are achieved with mean accuracies of 99.78%, 97.56% and 97.35% during level-ground walking, ramp ascent and descent, respectively. Overall, the benefits of our work for accurate recognition and prediction of walking activity and gait periods, make it a suitable high-level method for the development of intelligent assistive robots.