爆轰产物注入超音速喷管区域的推力矢量控制

S. Vasyliv, K. Ternova
{"title":"爆轰产物注入超音速喷管区域的推力矢量控制","authors":"S. Vasyliv, K. Ternova","doi":"10.15407/itm2023.01.068","DOIUrl":null,"url":null,"abstract":"To solve the problem of satellite control and stabilization in emergencies, it is proposed to use a detonation rocket engine, which enables active maneuvering to avoid a collision with space debris. The goal of this work is to study a new way of rocket engine thrust vector control by acting with a detonation shock wave on the gas flow in the nozzle. A detonation wave in a supersonic flow in a nozzle was numerically simulated. The simulation was conducted in a non-stationary plane formulation at different angles of inclination of the detonation gas generator that initiates a detonation shock wave to the combustion chamber axis with the use of SolidWorks application software for the 11D25 engine of the Cyclone-3 third stage. The simulation results were used to pre-optimize the location of the detonation gas generator on the nozzle wall. It was found that the effect of the detonation wave on the main gas flow in the nozzle is caused by two force factors: the first is due to the reactive force produced by the detonation product injection into the nozzle and a high-pressure zone on the wall where the detonation gas generator is mounted, and the second is due to a change in pressure distribution over the nozzle surface. In order to increase the effect of the shock wave, the detonation products must be injected parallel to the main gas flow in the nozzle or at some angle. The simulation showed the drawbacks and advantages of detonation product injection at different angles. The detonation wave effect on a supersonic nozzle flow was studied experimentally. A system was developed to record the shock detonation wave propagation using a heat meter. A special nozzle model and a gas generator were developed to initiate a detonation wave interacting with a supersonic air flow. It was found out how the detonation wave separates the main flow from the nozzle walls in the overexpanded mode. The results may be used in the space-rocket industry to provide upper stage maneuvering to avoid a collision with space debris.","PeriodicalId":287730,"journal":{"name":"Technical mechanics","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thrust vector control by detonation product injection into the supersonic nozzle area\",\"authors\":\"S. Vasyliv, K. Ternova\",\"doi\":\"10.15407/itm2023.01.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of satellite control and stabilization in emergencies, it is proposed to use a detonation rocket engine, which enables active maneuvering to avoid a collision with space debris. The goal of this work is to study a new way of rocket engine thrust vector control by acting with a detonation shock wave on the gas flow in the nozzle. A detonation wave in a supersonic flow in a nozzle was numerically simulated. The simulation was conducted in a non-stationary plane formulation at different angles of inclination of the detonation gas generator that initiates a detonation shock wave to the combustion chamber axis with the use of SolidWorks application software for the 11D25 engine of the Cyclone-3 third stage. The simulation results were used to pre-optimize the location of the detonation gas generator on the nozzle wall. It was found that the effect of the detonation wave on the main gas flow in the nozzle is caused by two force factors: the first is due to the reactive force produced by the detonation product injection into the nozzle and a high-pressure zone on the wall where the detonation gas generator is mounted, and the second is due to a change in pressure distribution over the nozzle surface. In order to increase the effect of the shock wave, the detonation products must be injected parallel to the main gas flow in the nozzle or at some angle. The simulation showed the drawbacks and advantages of detonation product injection at different angles. The detonation wave effect on a supersonic nozzle flow was studied experimentally. A system was developed to record the shock detonation wave propagation using a heat meter. A special nozzle model and a gas generator were developed to initiate a detonation wave interacting with a supersonic air flow. It was found out how the detonation wave separates the main flow from the nozzle walls in the overexpanded mode. The results may be used in the space-rocket industry to provide upper stage maneuvering to avoid a collision with space debris.\",\"PeriodicalId\":287730,\"journal\":{\"name\":\"Technical mechanics\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/itm2023.01.068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/itm2023.01.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为解决突发事件下卫星的控制与稳定问题,提出采用爆轰火箭发动机,实现主动机动,避免与空间碎片碰撞。本文的目的是研究一种利用爆轰激波作用于喷管内气体流来控制火箭发动机推力矢量的新方法。对超声速流在喷管内的爆震波进行了数值模拟。利用SolidWorks应用软件对11D25旋风-3三级发动机在不同倾角下爆轰气体发生器向燃烧室轴线发起爆轰激波的非静止平面公式进行了仿真。利用仿真结果对爆轰气体发生器在喷嘴壁上的位置进行了预优化。研究发现,爆震波对喷管内主气流的影响是由两个力因素引起的:第一是由于爆轰产物注入喷管和安装爆震气体发生器的壁面上的高压区所产生的反作用力,第二是由于喷管表面压力分布的变化。为了提高激波的作用,爆轰产物的注入必须与喷管内的主气流平行或以一定角度注入。仿真结果显示了不同角度爆轰产物喷射的优缺点。实验研究了爆震波对超声速喷管流动的影响。研制了一种用热计记录激波传播的系统。研制了一种特殊的喷管模型和气体发生器,用于与超音速气流相互作用产生爆震波。研究了爆震波在过膨胀模式下将主流与喷管壁分离的机理。研究结果可用于空间火箭工业,为避免与空间碎片碰撞提供上层机动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thrust vector control by detonation product injection into the supersonic nozzle area
To solve the problem of satellite control and stabilization in emergencies, it is proposed to use a detonation rocket engine, which enables active maneuvering to avoid a collision with space debris. The goal of this work is to study a new way of rocket engine thrust vector control by acting with a detonation shock wave on the gas flow in the nozzle. A detonation wave in a supersonic flow in a nozzle was numerically simulated. The simulation was conducted in a non-stationary plane formulation at different angles of inclination of the detonation gas generator that initiates a detonation shock wave to the combustion chamber axis with the use of SolidWorks application software for the 11D25 engine of the Cyclone-3 third stage. The simulation results were used to pre-optimize the location of the detonation gas generator on the nozzle wall. It was found that the effect of the detonation wave on the main gas flow in the nozzle is caused by two force factors: the first is due to the reactive force produced by the detonation product injection into the nozzle and a high-pressure zone on the wall where the detonation gas generator is mounted, and the second is due to a change in pressure distribution over the nozzle surface. In order to increase the effect of the shock wave, the detonation products must be injected parallel to the main gas flow in the nozzle or at some angle. The simulation showed the drawbacks and advantages of detonation product injection at different angles. The detonation wave effect on a supersonic nozzle flow was studied experimentally. A system was developed to record the shock detonation wave propagation using a heat meter. A special nozzle model and a gas generator were developed to initiate a detonation wave interacting with a supersonic air flow. It was found out how the detonation wave separates the main flow from the nozzle walls in the overexpanded mode. The results may be used in the space-rocket industry to provide upper stage maneuvering to avoid a collision with space debris.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信