稀有特征高光谱遥感影像的固有维数估计

Xin Luo, Jia Wang, Huijie Zhang, Xiao Wang
{"title":"稀有特征高光谱遥感影像的固有维数估计","authors":"Xin Luo, Jia Wang, Huijie Zhang, Xiao Wang","doi":"10.1109/ICKII.2018.8569176","DOIUrl":null,"url":null,"abstract":"Estimating the intrinsic dimensionality of hyper spectral remote sensing imagery is an essential step in processing this kind of data. A novel estimation algorithm is proposed, which can preserve both abundant and rare features in original data. First of all, the QR decomposition of an original data matrix is carried out in order to decrease computational complexity, and a sliding noise detection window is applied to noise reduction for improving the accuracy of dimensionality estimation. Furthermore, a manifold learning method is used to determine a limit of intrinsic dimensionality and finally, intrinsic dimensionality is estimated through the singular value decomposition and $l_{2,\\infty }$-norm theory. The experimental results of simulated and real data are presented, which shown our proposed algorithm outperforms some classical algorithms.","PeriodicalId":170587,"journal":{"name":"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Intrinsic Dimensionality of Hyperspectral Remote Sensing Imagery with Rare Features\",\"authors\":\"Xin Luo, Jia Wang, Huijie Zhang, Xiao Wang\",\"doi\":\"10.1109/ICKII.2018.8569176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the intrinsic dimensionality of hyper spectral remote sensing imagery is an essential step in processing this kind of data. A novel estimation algorithm is proposed, which can preserve both abundant and rare features in original data. First of all, the QR decomposition of an original data matrix is carried out in order to decrease computational complexity, and a sliding noise detection window is applied to noise reduction for improving the accuracy of dimensionality estimation. Furthermore, a manifold learning method is used to determine a limit of intrinsic dimensionality and finally, intrinsic dimensionality is estimated through the singular value decomposition and $l_{2,\\\\infty }$-norm theory. The experimental results of simulated and real data are presented, which shown our proposed algorithm outperforms some classical algorithms.\",\"PeriodicalId\":170587,\"journal\":{\"name\":\"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKII.2018.8569176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKII.2018.8569176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱遥感影像的固有维数估算是高光谱遥感数据处理的重要环节。提出了一种新的估计算法,既能保留原始数据中的丰富特征,又能保留原始数据中的稀有特征。首先对原始数据矩阵进行QR分解以降低计算复杂度,并采用滑动噪声检测窗口进行降噪以提高维数估计的精度。在此基础上,利用流形学习方法确定了固有维数的极限,最后通过奇异值分解和$l_{2,\infty }$ -范数理论估计了固有维数。仿真和实际数据的实验结果表明,本文提出的算法优于一些经典算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Intrinsic Dimensionality of Hyperspectral Remote Sensing Imagery with Rare Features
Estimating the intrinsic dimensionality of hyper spectral remote sensing imagery is an essential step in processing this kind of data. A novel estimation algorithm is proposed, which can preserve both abundant and rare features in original data. First of all, the QR decomposition of an original data matrix is carried out in order to decrease computational complexity, and a sliding noise detection window is applied to noise reduction for improving the accuracy of dimensionality estimation. Furthermore, a manifold learning method is used to determine a limit of intrinsic dimensionality and finally, intrinsic dimensionality is estimated through the singular value decomposition and $l_{2,\infty }$-norm theory. The experimental results of simulated and real data are presented, which shown our proposed algorithm outperforms some classical algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信