动态异常的可靠检测及其在数字帧中微弱空间目标条纹提取中的应用

N. Berenkov, A. Kolessa, A. Tartakovsky
{"title":"动态异常的可靠检测及其在数字帧中微弱空间目标条纹提取中的应用","authors":"N. Berenkov, A. Kolessa, A. Tartakovsky","doi":"10.1109/EnT50437.2020.9431314","DOIUrl":null,"url":null,"abstract":"We consider a problem of reliable detection of dynamic anomalies in observed data. The problem is of importance for many applications, e.g., for signal and image processing where dynamic anomalies (corresponding to changes in distributions of observed processes) take place when signals appear and disappear at unknown points in time or space. We assume that the duration of the change may be finite and unknown and focus on Bayesian and maximin optimality criteria of maximizing the probability of detection in a prespecified time interval under constraints imposed on the rate of false positives. Using optimal stopping theory we find optimal Bayesian and maximin detection procedures. We then compare operating characteristics of the optimal procedures with the popular Finite Moving Average (FMA) rule, using Monte Carlo simulations, which show that typically the FMA procedure has almost the same performance as the optimal ones. The FMA rule is applied to the extraction of faint streaks of satellites from digital frames captured with telescopes.","PeriodicalId":129694,"journal":{"name":"2020 International Conference Engineering and Telecommunication (En&T)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliable Detection of Dynamic Anomalies with Application to Extracting Faint Space Object Streaks from Digital Frames\",\"authors\":\"N. Berenkov, A. Kolessa, A. Tartakovsky\",\"doi\":\"10.1109/EnT50437.2020.9431314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a problem of reliable detection of dynamic anomalies in observed data. The problem is of importance for many applications, e.g., for signal and image processing where dynamic anomalies (corresponding to changes in distributions of observed processes) take place when signals appear and disappear at unknown points in time or space. We assume that the duration of the change may be finite and unknown and focus on Bayesian and maximin optimality criteria of maximizing the probability of detection in a prespecified time interval under constraints imposed on the rate of false positives. Using optimal stopping theory we find optimal Bayesian and maximin detection procedures. We then compare operating characteristics of the optimal procedures with the popular Finite Moving Average (FMA) rule, using Monte Carlo simulations, which show that typically the FMA procedure has almost the same performance as the optimal ones. The FMA rule is applied to the extraction of faint streaks of satellites from digital frames captured with telescopes.\",\"PeriodicalId\":129694,\"journal\":{\"name\":\"2020 International Conference Engineering and Telecommunication (En&T)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference Engineering and Telecommunication (En&T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EnT50437.2020.9431314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Engineering and Telecommunication (En&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT50437.2020.9431314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了在观测数据中动态异常的可靠检测问题。这个问题对于许多应用都很重要,例如,对于信号和图像处理,当信号在未知的时间或空间点出现和消失时,会发生动态异常(对应于观察过程分布的变化)。我们假设变化的持续时间可能是有限的和未知的,并将重点放在贝叶斯和最大化最优性标准上,即在对误报率施加的约束下,在预先指定的时间间隔内最大化检测概率。利用最优停止理论,我们找到了最优贝叶斯和最大值检测方法。然后,我们将最优程序的运行特性与流行的有限移动平均(FMA)规则进行比较,使用蒙特卡罗模拟,结果表明,FMA程序通常与最优程序具有几乎相同的性能。将FMA规则应用于从望远镜捕获的数字帧中提取卫星的微弱条纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Detection of Dynamic Anomalies with Application to Extracting Faint Space Object Streaks from Digital Frames
We consider a problem of reliable detection of dynamic anomalies in observed data. The problem is of importance for many applications, e.g., for signal and image processing where dynamic anomalies (corresponding to changes in distributions of observed processes) take place when signals appear and disappear at unknown points in time or space. We assume that the duration of the change may be finite and unknown and focus on Bayesian and maximin optimality criteria of maximizing the probability of detection in a prespecified time interval under constraints imposed on the rate of false positives. Using optimal stopping theory we find optimal Bayesian and maximin detection procedures. We then compare operating characteristics of the optimal procedures with the popular Finite Moving Average (FMA) rule, using Monte Carlo simulations, which show that typically the FMA procedure has almost the same performance as the optimal ones. The FMA rule is applied to the extraction of faint streaks of satellites from digital frames captured with telescopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信