自然语言处理中的生成对抗方法

E. N. Karuna, Petr V. Sokolov, Daria A. Gavrilic
{"title":"自然语言处理中的生成对抗方法","authors":"E. N. Karuna, Petr V. Sokolov, Daria A. Gavrilic","doi":"10.1109/scm55405.2022.9794898","DOIUrl":null,"url":null,"abstract":"The use of a generative adversarial algorithm for training neural networks made it possible to make significant progress in solving the problem of generating images and audio data. Nevertheless, important problems remain in solving the tasks of generating discrete data sequences. Solving such problems will allow using generative-adversarial learning to generate text data. This paper reflects a brief overview of modern research and achievements in the generation of text data using generative adversarial learning, lists a set of tasks that can be solved using this approach, describes possible problems and existing methods for solving existing problems, and also describes some suggestions for improving models. The structure and algorithm of the proposed system are described, the research results are presented.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generative Adversarial Approach in Natural Language Processing\",\"authors\":\"E. N. Karuna, Petr V. Sokolov, Daria A. Gavrilic\",\"doi\":\"10.1109/scm55405.2022.9794898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of a generative adversarial algorithm for training neural networks made it possible to make significant progress in solving the problem of generating images and audio data. Nevertheless, important problems remain in solving the tasks of generating discrete data sequences. Solving such problems will allow using generative-adversarial learning to generate text data. This paper reflects a brief overview of modern research and achievements in the generation of text data using generative adversarial learning, lists a set of tasks that can be solved using this approach, describes possible problems and existing methods for solving existing problems, and also describes some suggestions for improving models. The structure and algorithm of the proposed system are described, the research results are presented.\",\"PeriodicalId\":162457,\"journal\":{\"name\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scm55405.2022.9794898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用生成对抗算法训练神经网络使得在解决生成图像和音频数据的问题上取得重大进展成为可能。然而,在解决生成离散数据序列的任务方面仍然存在重要的问题。解决这些问题将允许使用生成对抗学习来生成文本数据。本文简要概述了使用生成式对抗学习生成文本数据的现代研究和成果,列出了使用该方法可以解决的一系列任务,描述了可能存在的问题和解决现有问题的现有方法,并描述了一些改进模型的建议。介绍了该系统的结构和算法,并给出了研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Approach in Natural Language Processing
The use of a generative adversarial algorithm for training neural networks made it possible to make significant progress in solving the problem of generating images and audio data. Nevertheless, important problems remain in solving the tasks of generating discrete data sequences. Solving such problems will allow using generative-adversarial learning to generate text data. This paper reflects a brief overview of modern research and achievements in the generation of text data using generative adversarial learning, lists a set of tasks that can be solved using this approach, describes possible problems and existing methods for solving existing problems, and also describes some suggestions for improving models. The structure and algorithm of the proposed system are described, the research results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信