A. Boltasseva, C. DeVault, V. Bruno, S. Saha, Z. Kudyshev, A. Dutta, S. Vezzoli, M. Ferrera, D. Faccio, V. Shalaev
{"title":"透过(导电)镜子:纳米光子应用的透明导电氧化物(会议报告)","authors":"A. Boltasseva, C. DeVault, V. Bruno, S. Saha, Z. Kudyshev, A. Dutta, S. Vezzoli, M. Ferrera, D. Faccio, V. Shalaev","doi":"10.1117/12.2512275","DOIUrl":null,"url":null,"abstract":"Transparent Conducting Oxide (TCO) materials are degenerately-doped, wide-bandgap semiconductors which exhibit simultaneous high-conductivity and visible transparency. These unique properties are well known and frequently exploited for technologies such as touch-screen devices. In recent years, TCOs have been recognized as a promising material platform for nanophotonic devices, namely because of their simple, compatible fabrication, low-losses, dynamic modulation, and novel low-index properties. In this talk, I will highlight recent progress in the field of TCO-based nanophotonics, share our ongoing results and observations, and discuss future research challenges and directions. In particular, I will discuss our progress in developing metal-dielectric hybrid metasurfaces which incorporate TCOs for all-optical, ultrafast switching. Here, we incorporate defect-rich zinc oxide with a refractory titanium nitride metasurface for efficient light modulation at near-terahertz switching frequencies. My talk will also focus on TCO films for studying and observing low-index phenomena. Our recent work with aluminum-doped zinc oxide films demonstrates the ability for low-index materials to both enhance negative refraction and engender strongly coupled plasmonic systems with large room-temperature Rabi frequencies. Our work signifies the strong potential for incorporating transparent conducting oxides into plasmonic and nanophotonic devices to provide advances toward practical technologies and depth in scientific understanding.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Through the (conducting) looking-glass: transparent conducting oxides for nanophotonic applications (Conference Presentation)\",\"authors\":\"A. Boltasseva, C. DeVault, V. Bruno, S. Saha, Z. Kudyshev, A. Dutta, S. Vezzoli, M. Ferrera, D. Faccio, V. Shalaev\",\"doi\":\"10.1117/12.2512275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transparent Conducting Oxide (TCO) materials are degenerately-doped, wide-bandgap semiconductors which exhibit simultaneous high-conductivity and visible transparency. These unique properties are well known and frequently exploited for technologies such as touch-screen devices. In recent years, TCOs have been recognized as a promising material platform for nanophotonic devices, namely because of their simple, compatible fabrication, low-losses, dynamic modulation, and novel low-index properties. In this talk, I will highlight recent progress in the field of TCO-based nanophotonics, share our ongoing results and observations, and discuss future research challenges and directions. In particular, I will discuss our progress in developing metal-dielectric hybrid metasurfaces which incorporate TCOs for all-optical, ultrafast switching. Here, we incorporate defect-rich zinc oxide with a refractory titanium nitride metasurface for efficient light modulation at near-terahertz switching frequencies. My talk will also focus on TCO films for studying and observing low-index phenomena. Our recent work with aluminum-doped zinc oxide films demonstrates the ability for low-index materials to both enhance negative refraction and engender strongly coupled plasmonic systems with large room-temperature Rabi frequencies. Our work signifies the strong potential for incorporating transparent conducting oxides into plasmonic and nanophotonic devices to provide advances toward practical technologies and depth in scientific understanding.\",\"PeriodicalId\":106257,\"journal\":{\"name\":\"Oxide-based Materials and Devices X\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxide-based Materials and Devices X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2512275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxide-based Materials and Devices X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2512275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Through the (conducting) looking-glass: transparent conducting oxides for nanophotonic applications (Conference Presentation)
Transparent Conducting Oxide (TCO) materials are degenerately-doped, wide-bandgap semiconductors which exhibit simultaneous high-conductivity and visible transparency. These unique properties are well known and frequently exploited for technologies such as touch-screen devices. In recent years, TCOs have been recognized as a promising material platform for nanophotonic devices, namely because of their simple, compatible fabrication, low-losses, dynamic modulation, and novel low-index properties. In this talk, I will highlight recent progress in the field of TCO-based nanophotonics, share our ongoing results and observations, and discuss future research challenges and directions. In particular, I will discuss our progress in developing metal-dielectric hybrid metasurfaces which incorporate TCOs for all-optical, ultrafast switching. Here, we incorporate defect-rich zinc oxide with a refractory titanium nitride metasurface for efficient light modulation at near-terahertz switching frequencies. My talk will also focus on TCO films for studying and observing low-index phenomena. Our recent work with aluminum-doped zinc oxide films demonstrates the ability for low-index materials to both enhance negative refraction and engender strongly coupled plasmonic systems with large room-temperature Rabi frequencies. Our work signifies the strong potential for incorporating transparent conducting oxides into plasmonic and nanophotonic devices to provide advances toward practical technologies and depth in scientific understanding.