{"title":"蜂窝网络的干扰对准","authors":"Changho Suh, David Tse","doi":"10.1109/ALLERTON.2008.4797673","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new way of interference management for cellular networks. We develop the scheme that approaches to interference-free degree-of-freedom (dof) as the number K of users in each cell increases. Also we find the corresponding bandwidth scaling conditions for typical wireless channels: multi-path channels and single-path channels with propagation delay. The scheme is based on interference alignment. Especially for more-than-two-cell cases where there are multiple non-intended BSs, we propose a new version of interference alignment, namely subspace interference alignment. The idea is to align interferences into multi-dimensional subspace (instead of one dimension) for simultaneous alignments at multiple non-intended BSs. The proposed scheme requires finite dimensions growing linearly with K, i.e., ~O(K).","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"388","resultStr":"{\"title\":\"Interference Alignment for Cellular Networks\",\"authors\":\"Changho Suh, David Tse\",\"doi\":\"10.1109/ALLERTON.2008.4797673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new way of interference management for cellular networks. We develop the scheme that approaches to interference-free degree-of-freedom (dof) as the number K of users in each cell increases. Also we find the corresponding bandwidth scaling conditions for typical wireless channels: multi-path channels and single-path channels with propagation delay. The scheme is based on interference alignment. Especially for more-than-two-cell cases where there are multiple non-intended BSs, we propose a new version of interference alignment, namely subspace interference alignment. The idea is to align interferences into multi-dimensional subspace (instead of one dimension) for simultaneous alignments at multiple non-intended BSs. The proposed scheme requires finite dimensions growing linearly with K, i.e., ~O(K).\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"388\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we propose a new way of interference management for cellular networks. We develop the scheme that approaches to interference-free degree-of-freedom (dof) as the number K of users in each cell increases. Also we find the corresponding bandwidth scaling conditions for typical wireless channels: multi-path channels and single-path channels with propagation delay. The scheme is based on interference alignment. Especially for more-than-two-cell cases where there are multiple non-intended BSs, we propose a new version of interference alignment, namely subspace interference alignment. The idea is to align interferences into multi-dimensional subspace (instead of one dimension) for simultaneous alignments at multiple non-intended BSs. The proposed scheme requires finite dimensions growing linearly with K, i.e., ~O(K).