社会工程防御者(SE.Def):基于人类情感因素的分类和防御社会工程攻击

Adarsh S. V. Nair, Rathnakar Achary
{"title":"社会工程防御者(SE.Def):基于人类情感因素的分类和防御社会工程攻击","authors":"Adarsh S. V. Nair, Rathnakar Achary","doi":"10.1109/ICAIA57370.2023.10169678","DOIUrl":null,"url":null,"abstract":"One of the weakest links in any security system is neither the devices used nor the programs running on them; but the human beings using these devices. Most cyberattacks are initiated by human error. Hackers always use the most accessible and effective social engineering techniques to attack. Simply put, it is the art of manipulating people into sharing sensitive and confidential information. This research proposes a framework with four modules, namely, a source analyzer, a content classifier and analyzer, a link analyzer, and a risk reporting module, as a social engineering defender system for categorizing the risks before the email reaches the inbox of the user. Before it reaches the end user’s inbox, the system blocks the emails the social engineering defender has marked as “very high risk”.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Engineering Defender (SE.Def): Human Emotion Factor Based Classification and Defense against Social Engineering Attacks\",\"authors\":\"Adarsh S. V. Nair, Rathnakar Achary\",\"doi\":\"10.1109/ICAIA57370.2023.10169678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the weakest links in any security system is neither the devices used nor the programs running on them; but the human beings using these devices. Most cyberattacks are initiated by human error. Hackers always use the most accessible and effective social engineering techniques to attack. Simply put, it is the art of manipulating people into sharing sensitive and confidential information. This research proposes a framework with four modules, namely, a source analyzer, a content classifier and analyzer, a link analyzer, and a risk reporting module, as a social engineering defender system for categorizing the risks before the email reaches the inbox of the user. Before it reaches the end user’s inbox, the system blocks the emails the social engineering defender has marked as “very high risk”.\",\"PeriodicalId\":196526,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIA57370.2023.10169678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任何安全系统中最薄弱的环节之一既不是所使用的设备,也不是其上运行的程序;但是使用这些设备的人类。大多数网络攻击都是由人为错误引发的。黑客总是使用最容易获得和最有效的社会工程技术进行攻击。简单地说,这是一种操纵人们分享敏感和机密信息的艺术。本研究提出了一个包含源分析模块、内容分类分析模块、链接分析模块和风险报告模块四个模块的框架,作为社会工程防御系统,在邮件到达用户收件箱之前对风险进行分类。在邮件到达最终用户的收件箱之前,系统会拦截被社会工程防御者标记为“非常高风险”的邮件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Engineering Defender (SE.Def): Human Emotion Factor Based Classification and Defense against Social Engineering Attacks
One of the weakest links in any security system is neither the devices used nor the programs running on them; but the human beings using these devices. Most cyberattacks are initiated by human error. Hackers always use the most accessible and effective social engineering techniques to attack. Simply put, it is the art of manipulating people into sharing sensitive and confidential information. This research proposes a framework with four modules, namely, a source analyzer, a content classifier and analyzer, a link analyzer, and a risk reporting module, as a social engineering defender system for categorizing the risks before the email reaches the inbox of the user. Before it reaches the end user’s inbox, the system blocks the emails the social engineering defender has marked as “very high risk”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信