s弯光波导损耗的简单解析解

A. Syahriar
{"title":"s弯光波导损耗的简单解析解","authors":"A. Syahriar","doi":"10.1109/RFM.2008.4897467","DOIUrl":null,"url":null,"abstract":"A new theoretical version of loss calculation in optical waveguides S-bend has been developed. We derived a simple quasi-analytic theory based on integration of a phenomenological absorption coefficient. The general aims are to find simple methods of predicting the loss in bends whose functional form is described by a dasiashape functionpsila y = f(x), where f is continuous in its first derivative. The function we shall consider in detail is that describing a sinusoidal S-shaped bend. In the process, a number of significant anomalies in previously published formulations of bend loss are highlighted and resolved.","PeriodicalId":329128,"journal":{"name":"2008 IEEE International RF and Microwave Conference","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A simple analytical solution for loss in S-bend optical waveguide\",\"authors\":\"A. Syahriar\",\"doi\":\"10.1109/RFM.2008.4897467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new theoretical version of loss calculation in optical waveguides S-bend has been developed. We derived a simple quasi-analytic theory based on integration of a phenomenological absorption coefficient. The general aims are to find simple methods of predicting the loss in bends whose functional form is described by a dasiashape functionpsila y = f(x), where f is continuous in its first derivative. The function we shall consider in detail is that describing a sinusoidal S-shaped bend. In the process, a number of significant anomalies in previously published formulations of bend loss are highlighted and resolved.\",\"PeriodicalId\":329128,\"journal\":{\"name\":\"2008 IEEE International RF and Microwave Conference\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International RF and Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFM.2008.4897467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International RF and Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2008.4897467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种新的光波导s弯损耗计算理论。我们基于现象学吸收系数的积分导出了一个简单的拟解析理论。一般的目标是找到预测弯道损失的简单方法,其函数形式由一个连续函数y = f(x)描述,其中f的一阶导数是连续的。我们将详细考虑的函数是描述正弦s形弯曲的函数。在此过程中,先前发表的弯曲损失公式中的许多重要异常都得到了突出和解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple analytical solution for loss in S-bend optical waveguide
A new theoretical version of loss calculation in optical waveguides S-bend has been developed. We derived a simple quasi-analytic theory based on integration of a phenomenological absorption coefficient. The general aims are to find simple methods of predicting the loss in bends whose functional form is described by a dasiashape functionpsila y = f(x), where f is continuous in its first derivative. The function we shall consider in detail is that describing a sinusoidal S-shaped bend. In the process, a number of significant anomalies in previously published formulations of bend loss are highlighted and resolved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信