自动数据标注的自校正方法

Ce Liu, Tonghua Su, Lijuan Yu
{"title":"自动数据标注的自校正方法","authors":"Ce Liu, Tonghua Su, Lijuan Yu","doi":"10.1109/ACPR.2017.135","DOIUrl":null,"url":null,"abstract":"Supervised learning from data, especially using deep neural networks, usually needs tons of labeled data. Considering there are plenty of handwritten samples in the Internet, how to make use of the large amount of dirty data or make them cleaner? This paper presents self-correction learning method to automatically label dirty data. The methods lend inspiration from self-training framework. It trains the classifier iteratively on the dirty data, and shifts the cluster centers, corrects or deletes samples according to the estimated confidence during the iterations. Empirical results demonstrate that the proposed method can effectively improve the quality of the data and reduce great human annotation efforts.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-Correction Method for Automatic Data Annotation\",\"authors\":\"Ce Liu, Tonghua Su, Lijuan Yu\",\"doi\":\"10.1109/ACPR.2017.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised learning from data, especially using deep neural networks, usually needs tons of labeled data. Considering there are plenty of handwritten samples in the Internet, how to make use of the large amount of dirty data or make them cleaner? This paper presents self-correction learning method to automatically label dirty data. The methods lend inspiration from self-training framework. It trains the classifier iteratively on the dirty data, and shifts the cluster centers, corrects or deletes samples according to the estimated confidence during the iterations. Empirical results demonstrate that the proposed method can effectively improve the quality of the data and reduce great human annotation efforts.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从数据中进行监督学习,特别是使用深度神经网络,通常需要大量的标记数据。考虑到互联网上有大量的手写样本,如何利用大量的脏数据或使它们更干净?提出了一种自动标注脏数据的自校正学习方法。这些方法从自我训练框架中获得灵感。它在脏数据上迭代训练分类器,并在迭代过程中根据估计的置信度移动聚类中心,纠正或删除样本。实验结果表明,该方法可以有效地提高数据质量,减少人工标注的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Correction Method for Automatic Data Annotation
Supervised learning from data, especially using deep neural networks, usually needs tons of labeled data. Considering there are plenty of handwritten samples in the Internet, how to make use of the large amount of dirty data or make them cleaner? This paper presents self-correction learning method to automatically label dirty data. The methods lend inspiration from self-training framework. It trains the classifier iteratively on the dirty data, and shifts the cluster centers, corrects or deletes samples according to the estimated confidence during the iterations. Empirical results demonstrate that the proposed method can effectively improve the quality of the data and reduce great human annotation efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信