使用生成对抗神经网络的假emon的线条艺术着色

É. O. Rodrigues, E. Clua, G. B. Vitor
{"title":"使用生成对抗神经网络的假emon的线条艺术着色","authors":"É. O. Rodrigues, E. Clua, G. B. Vitor","doi":"10.1109/SBGAMES56371.2022.9961078","DOIUrl":null,"url":null,"abstract":"This work proposes a complete methodology to colorize images of Fakemon, anime-style monster-like creatures. In addition, we propose algorithms to extract the line art from colorized images as well as to extract color hints. Our work is the first in the literature to use automatic color hint extraction, to train the networks specifically with anime-styled creatures and to combine the Pix2Pix and CycleGAN approaches, two different generative adversarial networks that create a single final result. Visual results of the colorizations are feasible but there is still room for improvement.","PeriodicalId":154269,"journal":{"name":"2022 21st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Line Art Colorization of Fakemon using Generative Adversarial Neural Networks\",\"authors\":\"É. O. Rodrigues, E. Clua, G. B. Vitor\",\"doi\":\"10.1109/SBGAMES56371.2022.9961078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a complete methodology to colorize images of Fakemon, anime-style monster-like creatures. In addition, we propose algorithms to extract the line art from colorized images as well as to extract color hints. Our work is the first in the literature to use automatic color hint extraction, to train the networks specifically with anime-styled creatures and to combine the Pix2Pix and CycleGAN approaches, two different generative adversarial networks that create a single final result. Visual results of the colorizations are feasible but there is still room for improvement.\",\"PeriodicalId\":154269,\"journal\":{\"name\":\"2022 21st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBGAMES56371.2022.9961078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBGAMES56371.2022.9961078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作提出了一个完整的方法来上色的假面,动画风格的怪物般的生物的图像。此外,我们提出了从彩色图像中提取线条艺术以及提取颜色提示的算法。我们的工作是文献中第一个使用自动颜色提示提取,专门用动画风格的生物训练网络,并结合Pix2Pix和CycleGAN方法,这两种不同的生成对抗网络可以产生单一的最终结果。彩色化的视觉效果是可行的,但仍有改进的余地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Line Art Colorization of Fakemon using Generative Adversarial Neural Networks
This work proposes a complete methodology to colorize images of Fakemon, anime-style monster-like creatures. In addition, we propose algorithms to extract the line art from colorized images as well as to extract color hints. Our work is the first in the literature to use automatic color hint extraction, to train the networks specifically with anime-styled creatures and to combine the Pix2Pix and CycleGAN approaches, two different generative adversarial networks that create a single final result. Visual results of the colorizations are feasible but there is still room for improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信