基于HMM和RVM的实时跌落检测系统

Mei Jiang, Yuyang Chen, Yanyun Zhao, A. Cai
{"title":"基于HMM和RVM的实时跌落检测系统","authors":"Mei Jiang, Yuyang Chen, Yanyun Zhao, A. Cai","doi":"10.1109/VCIP.2013.6706385","DOIUrl":null,"url":null,"abstract":"The growing population of seniors leads to the need for an intelligent surveillance system to ensure the safety of the elders at home. Fall is one kind of the most seriously life-threatening emergencies for elderly people. Fall detection system based on video surveillance provides an efficient solution for detecting fall events automatically by analyzing human behaviors. In this paper, we propose a context-based fall detection system by analyzing human motion and posture using hidden Markov model (HMM) and relevance vector machine (RVM) respectively. Additionally, we integrate homography to deal with falls in any direction. The system is validated on an open fall database and our own video dataset. Experimental results demonstrate that our method achieves high robustness and accuracy in detecting different kinds of falls and runs at a real-time speed.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A real-time fall detection system based on HMM and RVM\",\"authors\":\"Mei Jiang, Yuyang Chen, Yanyun Zhao, A. Cai\",\"doi\":\"10.1109/VCIP.2013.6706385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing population of seniors leads to the need for an intelligent surveillance system to ensure the safety of the elders at home. Fall is one kind of the most seriously life-threatening emergencies for elderly people. Fall detection system based on video surveillance provides an efficient solution for detecting fall events automatically by analyzing human behaviors. In this paper, we propose a context-based fall detection system by analyzing human motion and posture using hidden Markov model (HMM) and relevance vector machine (RVM) respectively. Additionally, we integrate homography to deal with falls in any direction. The system is validated on an open fall database and our own video dataset. Experimental results demonstrate that our method achieves high robustness and accuracy in detecting different kinds of falls and runs at a real-time speed.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

老年人口的不断增长导致需要智能监控系统来确保家中老年人的安全。跌倒是老年人最严重的一种危及生命的突发事件。基于视频监控的跌倒检测系统通过分析人的行为,为自动检测跌倒事件提供了有效的解决方案。本文利用隐马尔可夫模型(HMM)和相关向量机(RVM)分别分析人体运动和姿势,提出了一种基于情境的跌倒检测系统。此外,我们整合了单应性来处理任何方向的跌落。该系统在一个开放的秋季数据库和我们自己的视频数据集上进行了验证。实验结果表明,该方法在检测不同类型的跌倒和实时运行速度方面具有较高的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A real-time fall detection system based on HMM and RVM
The growing population of seniors leads to the need for an intelligent surveillance system to ensure the safety of the elders at home. Fall is one kind of the most seriously life-threatening emergencies for elderly people. Fall detection system based on video surveillance provides an efficient solution for detecting fall events automatically by analyzing human behaviors. In this paper, we propose a context-based fall detection system by analyzing human motion and posture using hidden Markov model (HMM) and relevance vector machine (RVM) respectively. Additionally, we integrate homography to deal with falls in any direction. The system is validated on an open fall database and our own video dataset. Experimental results demonstrate that our method achieves high robustness and accuracy in detecting different kinds of falls and runs at a real-time speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信