用于传感器校准的压缩感知

V. Cevher, Richard Baraniuk
{"title":"用于传感器校准的压缩感知","authors":"V. Cevher, Richard Baraniuk","doi":"10.1109/SAM.2008.4606849","DOIUrl":null,"url":null,"abstract":"We consider a calibration problem, where we determine an unknown sensor location using the known track of a calibration target and a known reference sensor location. We cast the calibration problem as a sparse approximation problem where the unknown sensor location is determined over a discrete spatial grid with respect to the reference sensor. To achieve the calibration objective, low dimensional random projections of the sensor data are passed to the reference sensor, which significantly reduces the inter-sensor communication bandwidth. The unknown sensor location is then determined by solving an lscr1-norm minimization problem (linear program). Field data results are provided to demonstrate the effectiveness of the approach.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Compressive sensing for sensor calibration\",\"authors\":\"V. Cevher, Richard Baraniuk\",\"doi\":\"10.1109/SAM.2008.4606849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a calibration problem, where we determine an unknown sensor location using the known track of a calibration target and a known reference sensor location. We cast the calibration problem as a sparse approximation problem where the unknown sensor location is determined over a discrete spatial grid with respect to the reference sensor. To achieve the calibration objective, low dimensional random projections of the sensor data are passed to the reference sensor, which significantly reduces the inter-sensor communication bandwidth. The unknown sensor location is then determined by solving an lscr1-norm minimization problem (linear program). Field data results are provided to demonstrate the effectiveness of the approach.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们考虑一个校准问题,其中我们使用已知的校准目标轨迹和已知的参考传感器位置来确定未知的传感器位置。我们将校准问题视为一个稀疏逼近问题,其中未知传感器位置是相对于参考传感器在离散空间网格上确定的。为了实现标定目标,将传感器数据的低维随机投影传递给参考传感器,从而大大降低了传感器间的通信带宽。然后通过求解lscr1范数最小化问题(线性程序)确定未知传感器位置。现场数据结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive sensing for sensor calibration
We consider a calibration problem, where we determine an unknown sensor location using the known track of a calibration target and a known reference sensor location. We cast the calibration problem as a sparse approximation problem where the unknown sensor location is determined over a discrete spatial grid with respect to the reference sensor. To achieve the calibration objective, low dimensional random projections of the sensor data are passed to the reference sensor, which significantly reduces the inter-sensor communication bandwidth. The unknown sensor location is then determined by solving an lscr1-norm minimization problem (linear program). Field data results are provided to demonstrate the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信