{"title":"基于NEDA的离散傅立叶变换核的FPGA实现","authors":"A. Mankar, N. Prasad, S. Meher","doi":"10.1109/CSNT.2013.152","DOIUrl":null,"url":null,"abstract":"Transforms like Discrete Fourier Transform (DFT) are a major block in communication systems such as OFDM, etc. This paper reports architecture of a DFT core using new distributed arithmetic (NEDA) algorithm. The advantage of the proposed architecture is that the entire transform can be implemented using adder/subtractors and shifters only, thus minimising the hardware requirement compared to other architectures. The proposed design is implemented for 16 - bit data path (12 - bit for comparison) considering both integer representation as well as fixed point representation, thus increasing the scope of usage. The proposed design is mapped on to Xilinx XC2VP30-7FF896 FPGA, which is fabricated using 130 nm process technology. The hardware utilization of the proposed design on the mapped FPGA is 295 slices, 478 4-input LUTs and 304 slice flip flops. The maximum on board frequency of operation of the proposed design is 79.339 MHz. The proposed design has 72.27% improvement in area, 10.31% improvement in both maximum clock frequency and throughput when compared to other designs.","PeriodicalId":111865,"journal":{"name":"2013 International Conference on Communication Systems and Network Technologies","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FPGA Implementation of Discrete Fourier Transform Core Using NEDA\",\"authors\":\"A. Mankar, N. Prasad, S. Meher\",\"doi\":\"10.1109/CSNT.2013.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transforms like Discrete Fourier Transform (DFT) are a major block in communication systems such as OFDM, etc. This paper reports architecture of a DFT core using new distributed arithmetic (NEDA) algorithm. The advantage of the proposed architecture is that the entire transform can be implemented using adder/subtractors and shifters only, thus minimising the hardware requirement compared to other architectures. The proposed design is implemented for 16 - bit data path (12 - bit for comparison) considering both integer representation as well as fixed point representation, thus increasing the scope of usage. The proposed design is mapped on to Xilinx XC2VP30-7FF896 FPGA, which is fabricated using 130 nm process technology. The hardware utilization of the proposed design on the mapped FPGA is 295 slices, 478 4-input LUTs and 304 slice flip flops. The maximum on board frequency of operation of the proposed design is 79.339 MHz. The proposed design has 72.27% improvement in area, 10.31% improvement in both maximum clock frequency and throughput when compared to other designs.\",\"PeriodicalId\":111865,\"journal\":{\"name\":\"2013 International Conference on Communication Systems and Network Technologies\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Communication Systems and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2013.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2013.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA Implementation of Discrete Fourier Transform Core Using NEDA
Transforms like Discrete Fourier Transform (DFT) are a major block in communication systems such as OFDM, etc. This paper reports architecture of a DFT core using new distributed arithmetic (NEDA) algorithm. The advantage of the proposed architecture is that the entire transform can be implemented using adder/subtractors and shifters only, thus minimising the hardware requirement compared to other architectures. The proposed design is implemented for 16 - bit data path (12 - bit for comparison) considering both integer representation as well as fixed point representation, thus increasing the scope of usage. The proposed design is mapped on to Xilinx XC2VP30-7FF896 FPGA, which is fabricated using 130 nm process technology. The hardware utilization of the proposed design on the mapped FPGA is 295 slices, 478 4-input LUTs and 304 slice flip flops. The maximum on board frequency of operation of the proposed design is 79.339 MHz. The proposed design has 72.27% improvement in area, 10.31% improvement in both maximum clock frequency and throughput when compared to other designs.