基于相干矩的风险泛函近似

Stoyan Stoyanov
{"title":"基于相干矩的风险泛函近似","authors":"Stoyan Stoyanov","doi":"10.2139/ssrn.2346011","DOIUrl":null,"url":null,"abstract":"The paper introduces a new, moment-based representation of version independent, coherent risk functionals for distributions with a finite second moment. The representation is based on L-moments. We analyze the second- and the third-order approximations and provide a method for constructing coherent approximations with the first few moments of the distribution. The method can be applied to coherent and non-coherent risk functionals and is interpreted in terms of a weighted average of particular Bayesian versions of Conditional Value-at-Risk. We formulate a conservative risk functional and a minimax portfolio construction problem which is non-parametric, convex, and exhibits a relative statistical robustness of the optimal solution compared to the classical utility-based approach. The developed approach bridges the gap between the intuitive utility-based higher-order moment portfolio construction and the formal construct of coherent risk functionals.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent Moment-Based Approximations of Risk Functionals\",\"authors\":\"Stoyan Stoyanov\",\"doi\":\"10.2139/ssrn.2346011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a new, moment-based representation of version independent, coherent risk functionals for distributions with a finite second moment. The representation is based on L-moments. We analyze the second- and the third-order approximations and provide a method for constructing coherent approximations with the first few moments of the distribution. The method can be applied to coherent and non-coherent risk functionals and is interpreted in terms of a weighted average of particular Bayesian versions of Conditional Value-at-Risk. We formulate a conservative risk functional and a minimax portfolio construction problem which is non-parametric, convex, and exhibits a relative statistical robustness of the optimal solution compared to the classical utility-based approach. The developed approach bridges the gap between the intuitive utility-based higher-order moment portfolio construction and the formal construct of coherent risk functionals.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2346011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2346011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种新的基于矩的版本无关、相干风险函数的表示,用于具有有限第二矩的分布。表示是基于l -矩的。我们分析了二阶和三阶近似,并提供了一种利用分布的前几阶矩构造相干近似的方法。该方法可以应用于连贯和非连贯的风险函数,并根据特定贝叶斯版本的条件风险值的加权平均值进行解释。我们构造了一个非参数的、凸的、保守的风险函数和极大极小组合构造问题,并与经典的基于效用的方法相比,展示了相对的最优解的统计鲁棒性。所开发的方法弥合了基于直观效用的高阶矩投资组合构建与连贯风险函数的正式构建之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent Moment-Based Approximations of Risk Functionals
The paper introduces a new, moment-based representation of version independent, coherent risk functionals for distributions with a finite second moment. The representation is based on L-moments. We analyze the second- and the third-order approximations and provide a method for constructing coherent approximations with the first few moments of the distribution. The method can be applied to coherent and non-coherent risk functionals and is interpreted in terms of a weighted average of particular Bayesian versions of Conditional Value-at-Risk. We formulate a conservative risk functional and a minimax portfolio construction problem which is non-parametric, convex, and exhibits a relative statistical robustness of the optimal solution compared to the classical utility-based approach. The developed approach bridges the gap between the intuitive utility-based higher-order moment portfolio construction and the formal construct of coherent risk functionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信