基于多参数DBSCAN聚类的异常检测

Tran Manh Thang, Juntae Kim
{"title":"基于多参数DBSCAN聚类的异常检测","authors":"Tran Manh Thang, Juntae Kim","doi":"10.1109/ICISA.2011.5772437","DOIUrl":null,"url":null,"abstract":"DBSCAN is one of powerful density-based clustering algorithms for detecting outliers, but there are some difficulties in finding its parameters (epsilon and minpts). Currently, there is also no way to use DBSCAN with different parameters for different cluster when it is applied to anomaly detection when network traffic includes multiple traffic types with different characteristics. In this paper, we propose a new way of finding DBSCAN's parameters and applying DBSCAN with those parameters. Each cluster may have different epsilon and minpts values in our algorithm. The algorithm is called DBSCAN-MP. We also propose a mechanism of updating normal behavior by updating size or creating new clusters when network environment is changing overtime. We evaluate proposed algorithm using the KDD Cup 1999 dataset. The result shows that the performance is improved compare to other clustering algorithms.","PeriodicalId":425210,"journal":{"name":"2011 International Conference on Information Science and Applications","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"The Anomaly Detection by Using DBSCAN Clustering with Multiple Parameters\",\"authors\":\"Tran Manh Thang, Juntae Kim\",\"doi\":\"10.1109/ICISA.2011.5772437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DBSCAN is one of powerful density-based clustering algorithms for detecting outliers, but there are some difficulties in finding its parameters (epsilon and minpts). Currently, there is also no way to use DBSCAN with different parameters for different cluster when it is applied to anomaly detection when network traffic includes multiple traffic types with different characteristics. In this paper, we propose a new way of finding DBSCAN's parameters and applying DBSCAN with those parameters. Each cluster may have different epsilon and minpts values in our algorithm. The algorithm is called DBSCAN-MP. We also propose a mechanism of updating normal behavior by updating size or creating new clusters when network environment is changing overtime. We evaluate proposed algorithm using the KDD Cup 1999 dataset. The result shows that the performance is improved compare to other clustering algorithms.\",\"PeriodicalId\":425210,\"journal\":{\"name\":\"2011 International Conference on Information Science and Applications\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2011.5772437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2011.5772437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

DBSCAN是一种功能强大的基于密度的聚类算法,用于检测离群值,但在寻找其参数(epsilon和minpts)方面存在一些困难。目前,当网络流量包含多种不同特征的流量类型时,也无法对不同集群使用不同参数的DBSCAN进行异常检测。本文提出了一种寻找DBSCAN参数并利用这些参数应用DBSCAN的新方法。在我们的算法中,每个聚类可能有不同的epsilon和minpts值。该算法被称为DBSCAN-MP。我们还提出了一种在网络环境不断变化的情况下,通过更新集群大小或创建新的集群来更新正常行为的机制。我们使用KDD Cup 1999数据集评估了所提出的算法。结果表明,与其他聚类算法相比,该算法的性能得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Anomaly Detection by Using DBSCAN Clustering with Multiple Parameters
DBSCAN is one of powerful density-based clustering algorithms for detecting outliers, but there are some difficulties in finding its parameters (epsilon and minpts). Currently, there is also no way to use DBSCAN with different parameters for different cluster when it is applied to anomaly detection when network traffic includes multiple traffic types with different characteristics. In this paper, we propose a new way of finding DBSCAN's parameters and applying DBSCAN with those parameters. Each cluster may have different epsilon and minpts values in our algorithm. The algorithm is called DBSCAN-MP. We also propose a mechanism of updating normal behavior by updating size or creating new clusters when network environment is changing overtime. We evaluate proposed algorithm using the KDD Cup 1999 dataset. The result shows that the performance is improved compare to other clustering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信