{"title":"基于视觉学习的机器人抓取系统","authors":"Weijun Guan, Yulan Guo","doi":"10.1145/3571560.3571564","DOIUrl":null,"url":null,"abstract":"Deep learning has promoted the development of many areas in computer vision and robotics. However, most of the researches focus on an individual task. In this paper, we design a multi-task robot system based on ROS platform and YOLO network to complete the object detection, positioning, and grasping tasks. In terms of hardware, a heterogeneous computing platform is established to achieve high computing power while reducing energy consumption. In terms of software, an algorithm framework is designed for the multi-task robot system according to the characters the heterogeneous computing platform. Experimental results on real data show that the proposed robot system achieves promising object detection, positioning and grasping performance.","PeriodicalId":143909,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Visual Learning based Robotic Grasping System\",\"authors\":\"Weijun Guan, Yulan Guo\",\"doi\":\"10.1145/3571560.3571564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has promoted the development of many areas in computer vision and robotics. However, most of the researches focus on an individual task. In this paper, we design a multi-task robot system based on ROS platform and YOLO network to complete the object detection, positioning, and grasping tasks. In terms of hardware, a heterogeneous computing platform is established to achieve high computing power while reducing energy consumption. In terms of software, an algorithm framework is designed for the multi-task robot system according to the characters the heterogeneous computing platform. Experimental results on real data show that the proposed robot system achieves promising object detection, positioning and grasping performance.\",\"PeriodicalId\":143909,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571560.3571564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571560.3571564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning has promoted the development of many areas in computer vision and robotics. However, most of the researches focus on an individual task. In this paper, we design a multi-task robot system based on ROS platform and YOLO network to complete the object detection, positioning, and grasping tasks. In terms of hardware, a heterogeneous computing platform is established to achieve high computing power while reducing energy consumption. In terms of software, an algorithm framework is designed for the multi-task robot system according to the characters the heterogeneous computing platform. Experimental results on real data show that the proposed robot system achieves promising object detection, positioning and grasping performance.