基于实际数据的轨道车辆轴承故障机载声分析

Matthias Kreuzer, D. Schmidt, Simon Wokusch, Walter Kellermann
{"title":"基于实际数据的轨道车辆轴承故障机载声分析","authors":"Matthias Kreuzer, D. Schmidt, Simon Wokusch, Walter Kellermann","doi":"10.1109/ICPHM57936.2023.10194026","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenging problem of detecting bearing faults in railway vehicles by analyzing acoustic signals recorded during regular operation. For this, we introduce Mel Frequency Cepstral Coefficients (MFCCs) as features, which form the input to a simple Multi-Layer Perceptron classifier. The proposed method is evaluated with real-world data that was obtained for state-of-the-art commuter railway vehicles in a measurement campaign. The experiments show that bearing faults can be reliably detected with the chosen MFCC features even for bearing damages that were not included in training.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Airborne Sound Analysis for the Detection of Bearing Faults in Railway Vehicles with Real-World Data\",\"authors\":\"Matthias Kreuzer, D. Schmidt, Simon Wokusch, Walter Kellermann\",\"doi\":\"10.1109/ICPHM57936.2023.10194026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the challenging problem of detecting bearing faults in railway vehicles by analyzing acoustic signals recorded during regular operation. For this, we introduce Mel Frequency Cepstral Coefficients (MFCCs) as features, which form the input to a simple Multi-Layer Perceptron classifier. The proposed method is evaluated with real-world data that was obtained for state-of-the-art commuter railway vehicles in a measurement campaign. The experiments show that bearing faults can be reliably detected with the chosen MFCC features even for bearing damages that were not included in training.\",\"PeriodicalId\":169274,\"journal\":{\"name\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM57936.2023.10194026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10194026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过分析轨道车辆正常运行过程中记录的声信号,解决了轨道车辆轴承故障检测的难题。为此,我们引入了Mel频率倒谱系数(MFCCs)作为特征,它构成了一个简单的多层感知器分类器的输入。所提出的方法是评估与现实世界的数据,获得了最先进的通勤铁路车辆在测量活动。实验表明,即使对训练中未包含的轴承损伤,所选择的MFCC特征也能可靠地检测出轴承故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Airborne Sound Analysis for the Detection of Bearing Faults in Railway Vehicles with Real-World Data
In this paper, we address the challenging problem of detecting bearing faults in railway vehicles by analyzing acoustic signals recorded during regular operation. For this, we introduce Mel Frequency Cepstral Coefficients (MFCCs) as features, which form the input to a simple Multi-Layer Perceptron classifier. The proposed method is evaluated with real-world data that was obtained for state-of-the-art commuter railway vehicles in a measurement campaign. The experiments show that bearing faults can be reliably detected with the chosen MFCC features even for bearing damages that were not included in training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信