基于核函数的微阵列基因表达数据聚类评估参数效度指标

Rui Fa, A. Nandi
{"title":"基于核函数的微阵列基因表达数据聚类评估参数效度指标","authors":"Rui Fa, A. Nandi","doi":"10.1109/MLSP.2012.6349780","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a kernel-based parametric validity index (KPVI), which not only inherits robust feature from the newly proposed PVI, but possesses extra superiority inherited from the kernel method. The KPVI employs the kernel method to calculate both the inter-cluster and the intra cluster dissimilarities. Furthermore, we develop several rules to guide the selection of parameter values by examining the dissimilarity densities of different datasets such that the maximal appropriate values of the parameters for individual dataset can be obtained. We evaluate the new KPVI for assessing five clustering algorithms in both synthetic and real gene expression datasets. The experimental results support that the KPVI has the most superior performance among the existing validation algorithms, even better than the PVI.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kernel-based parametric validity index for assessing clusters from microarray gene expression data\",\"authors\":\"Rui Fa, A. Nandi\",\"doi\":\"10.1109/MLSP.2012.6349780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a kernel-based parametric validity index (KPVI), which not only inherits robust feature from the newly proposed PVI, but possesses extra superiority inherited from the kernel method. The KPVI employs the kernel method to calculate both the inter-cluster and the intra cluster dissimilarities. Furthermore, we develop several rules to guide the selection of parameter values by examining the dissimilarity densities of different datasets such that the maximal appropriate values of the parameters for individual dataset can be obtained. We evaluate the new KPVI for assessing five clustering algorithms in both synthetic and real gene expression datasets. The experimental results support that the KPVI has the most superior performance among the existing validation algorithms, even better than the PVI.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于核的参数有效性指标(KPVI),它不仅继承了新提出的参数有效性指标的鲁棒性,而且具有核方法的优越性。KPVI采用核方法计算簇间和簇内的不相似度。此外,我们制定了一些规则,通过检查不同数据集的不同密度来指导参数值的选择,从而可以获得单个数据集参数的最大适当值。我们对新的KPVI在合成和真实基因表达数据集上评估五种聚类算法进行了评估。实验结果表明,KPVI算法在现有验证算法中具有最优的性能,甚至优于PVI算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel-based parametric validity index for assessing clusters from microarray gene expression data
In this paper, we develop a kernel-based parametric validity index (KPVI), which not only inherits robust feature from the newly proposed PVI, but possesses extra superiority inherited from the kernel method. The KPVI employs the kernel method to calculate both the inter-cluster and the intra cluster dissimilarities. Furthermore, we develop several rules to guide the selection of parameter values by examining the dissimilarity densities of different datasets such that the maximal appropriate values of the parameters for individual dataset can be obtained. We evaluate the new KPVI for assessing five clustering algorithms in both synthetic and real gene expression datasets. The experimental results support that the KPVI has the most superior performance among the existing validation algorithms, even better than the PVI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信