用于消除图像模糊的神经网络

C.M. Jubien, M. R. Jernigan
{"title":"用于消除图像模糊的神经网络","authors":"C.M. Jubien, M. R. Jernigan","doi":"10.1109/PACRIM.1991.160776","DOIUrl":null,"url":null,"abstract":"A neural network architecture for deblurring a blurry scene without prior knowledge of the blur is proposed. Two different training algorithms are described, one a standard neural network training algorithm (employing the least mean squares (LMS) rule) and the second an original algorithm, dubbed algorithm-X. Both were successful for developing inverse blur filters to enhance a blurry picture. Algorithm-X is computationally less complex than the LMS algorithm, and in tests comparing the training times of the two algorithms, algorithm-X was found to be faster.<<ETX>>","PeriodicalId":289986,"journal":{"name":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A neural network for deblurring an image\",\"authors\":\"C.M. Jubien, M. R. Jernigan\",\"doi\":\"10.1109/PACRIM.1991.160776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network architecture for deblurring a blurry scene without prior knowledge of the blur is proposed. Two different training algorithms are described, one a standard neural network training algorithm (employing the least mean squares (LMS) rule) and the second an original algorithm, dubbed algorithm-X. Both were successful for developing inverse blur filters to enhance a blurry picture. Algorithm-X is computationally less complex than the LMS algorithm, and in tests comparing the training times of the two algorithms, algorithm-X was found to be faster.<<ETX>>\",\"PeriodicalId\":289986,\"journal\":{\"name\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1991.160776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1991.160776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种不需要先验知识就能对模糊场景进行去模糊处理的神经网络结构。描述了两种不同的训练算法,一种是标准的神经网络训练算法(采用最小均方(LMS)规则),另一种是原始算法,称为algorithm- x。他们都成功地开发了逆模糊滤光片来增强模糊图像。算法- x的计算复杂度低于LMS算法,并且在比较两种算法的训练时间的测试中,发现算法- x更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network for deblurring an image
A neural network architecture for deblurring a blurry scene without prior knowledge of the blur is proposed. Two different training algorithms are described, one a standard neural network training algorithm (employing the least mean squares (LMS) rule) and the second an original algorithm, dubbed algorithm-X. Both were successful for developing inverse blur filters to enhance a blurry picture. Algorithm-X is computationally less complex than the LMS algorithm, and in tests comparing the training times of the two algorithms, algorithm-X was found to be faster.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信