喜鹊:使用深度强化学习自动调整分布式文件系统的静态参数

Houkun Zhu, Dominik Scheinert, L. Thamsen, Kordian Gontarska, O. Kao
{"title":"喜鹊:使用深度强化学习自动调整分布式文件系统的静态参数","authors":"Houkun Zhu, Dominik Scheinert, L. Thamsen, Kordian Gontarska, O. Kao","doi":"10.1109/IC2E55432.2022.00023","DOIUrl":null,"url":null,"abstract":"Distributed file systems are widely used nowadays, yet using their default configurations is often not optimal. At the same time, tuning configuration parameters is typically challenging and time-consuming. It demands expertise and tuning operations can also be expensive. This is especially the case for static parameters, where changes take effect only after a restart of the system or workloads. We propose a novel approach, Magpie, which utilizes deep re-inforcement learning to tune static parameters by strategically ex-ploring and exploiting configuration parameter spaces. To boost the tuning of the static parameters, our method employs both server and client metrics of distributed file systems to understand the relationship between static parameters and performance. Our empirical evaluation results show that Magpie can noticeably improve the performance of the distributed file system Lustre, where our approach on average achieves 91.8 % throughput gains against default configuration after tuning towards single performance indicator optimization, while it reaches 39.7% more throughput gains against the baseline.","PeriodicalId":415781,"journal":{"name":"2022 IEEE International Conference on Cloud Engineering (IC2E)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magpie: Automatically Tuning Static Parameters for Distributed File Systems using Deep Reinforcement Learning\",\"authors\":\"Houkun Zhu, Dominik Scheinert, L. Thamsen, Kordian Gontarska, O. Kao\",\"doi\":\"10.1109/IC2E55432.2022.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed file systems are widely used nowadays, yet using their default configurations is often not optimal. At the same time, tuning configuration parameters is typically challenging and time-consuming. It demands expertise and tuning operations can also be expensive. This is especially the case for static parameters, where changes take effect only after a restart of the system or workloads. We propose a novel approach, Magpie, which utilizes deep re-inforcement learning to tune static parameters by strategically ex-ploring and exploiting configuration parameter spaces. To boost the tuning of the static parameters, our method employs both server and client metrics of distributed file systems to understand the relationship between static parameters and performance. Our empirical evaluation results show that Magpie can noticeably improve the performance of the distributed file system Lustre, where our approach on average achieves 91.8 % throughput gains against default configuration after tuning towards single performance indicator optimization, while it reaches 39.7% more throughput gains against the baseline.\",\"PeriodicalId\":415781,\"journal\":{\"name\":\"2022 IEEE International Conference on Cloud Engineering (IC2E)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cloud Engineering (IC2E)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2E55432.2022.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cloud Engineering (IC2E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E55432.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分布式文件系统现在被广泛使用,但是使用它们的默认配置通常不是最优的。同时,调优配置参数通常是具有挑战性和耗时的。它需要专业知识,调优操作也可能很昂贵。对于静态参数尤其如此,其中的更改只有在重新启动系统或工作负载后才会生效。我们提出了一种新的方法,Magpie,它利用深度强化学习通过战略性地探索和利用配置参数空间来调整静态参数。为了提高静态参数的调优,我们的方法使用分布式文件系统的服务器和客户机指标来理解静态参数和性能之间的关系。我们的经验评估结果表明,Magpie可以显著提高分布式文件系统Lustre的性能,在调优到单个性能指标优化后,我们的方法相对于默认配置平均实现了91.8%的吞吐量增益,而相对于基线,它实现了39.7%的吞吐量增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magpie: Automatically Tuning Static Parameters for Distributed File Systems using Deep Reinforcement Learning
Distributed file systems are widely used nowadays, yet using their default configurations is often not optimal. At the same time, tuning configuration parameters is typically challenging and time-consuming. It demands expertise and tuning operations can also be expensive. This is especially the case for static parameters, where changes take effect only after a restart of the system or workloads. We propose a novel approach, Magpie, which utilizes deep re-inforcement learning to tune static parameters by strategically ex-ploring and exploiting configuration parameter spaces. To boost the tuning of the static parameters, our method employs both server and client metrics of distributed file systems to understand the relationship between static parameters and performance. Our empirical evaluation results show that Magpie can noticeably improve the performance of the distributed file system Lustre, where our approach on average achieves 91.8 % throughput gains against default configuration after tuning towards single performance indicator optimization, while it reaches 39.7% more throughput gains against the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信