基于指数移动特征的声学场景分类

M. Sert
{"title":"基于指数移动特征的声学场景分类","authors":"M. Sert","doi":"10.1109/AIKE55402.2022.00013","DOIUrl":null,"url":null,"abstract":"Acoustic scene classification (ASC) aims to classify a sound recording, which is recorded from a particular environment into a predefined category that describes the environment. In order to better model event behaviors within acoustic scenes, we investigate the use of exponential moving (EM)-based statistical representations for the ASC task. To this end, we design a convolutional neural network (CNN) based approach using statistical EM-based representations of log mel-band energies. We evaluate our proposed method on the publicly available performance dataset, DCASE 2022 Low-Complexity Acoustic Scene Classification Challenge dataset. Results show that the EM-based statistical representations achieve higher classification accuracy and better log losses compared to just using the log Mel feature.","PeriodicalId":441077,"journal":{"name":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Moving based Features for Acoustic Scene Classification\",\"authors\":\"M. Sert\",\"doi\":\"10.1109/AIKE55402.2022.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic scene classification (ASC) aims to classify a sound recording, which is recorded from a particular environment into a predefined category that describes the environment. In order to better model event behaviors within acoustic scenes, we investigate the use of exponential moving (EM)-based statistical representations for the ASC task. To this end, we design a convolutional neural network (CNN) based approach using statistical EM-based representations of log mel-band energies. We evaluate our proposed method on the publicly available performance dataset, DCASE 2022 Low-Complexity Acoustic Scene Classification Challenge dataset. Results show that the EM-based statistical representations achieve higher classification accuracy and better log losses compared to just using the log Mel feature.\",\"PeriodicalId\":441077,\"journal\":{\"name\":\"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE55402.2022.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE55402.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

声学场景分类(ASC)旨在将从特定环境录制的录音分类到描述该环境的预定义类别中。为了更好地模拟声场景中的事件行为,我们研究了在ASC任务中使用基于指数移动(EM)的统计表示。为此,我们设计了一种基于卷积神经网络(CNN)的方法,使用基于统计em的对数频带能量表示。我们在公开可用的性能数据集DCASE 2022低复杂度声学场景分类挑战数据集上评估了我们提出的方法。结果表明,与仅使用对数Mel特征相比,基于em的统计表示具有更高的分类精度和更小的日志损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Moving based Features for Acoustic Scene Classification
Acoustic scene classification (ASC) aims to classify a sound recording, which is recorded from a particular environment into a predefined category that describes the environment. In order to better model event behaviors within acoustic scenes, we investigate the use of exponential moving (EM)-based statistical representations for the ASC task. To this end, we design a convolutional neural network (CNN) based approach using statistical EM-based representations of log mel-band energies. We evaluate our proposed method on the publicly available performance dataset, DCASE 2022 Low-Complexity Acoustic Scene Classification Challenge dataset. Results show that the EM-based statistical representations achieve higher classification accuracy and better log losses compared to just using the log Mel feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信