利用可见光通信实现低功耗室内定位系统的微控制器机器学习模型

I. Cappelli, Federico Carli, Matteo Intravaia, Federico Micheletti, G. Peruzzi
{"title":"利用可见光通信实现低功耗室内定位系统的微控制器机器学习模型","authors":"I. Cappelli, Federico Carli, Matteo Intravaia, Federico Micheletti, G. Peruzzi","doi":"10.1109/MN55117.2022.9887638","DOIUrl":null,"url":null,"abstract":"This paper presents a low-power Visible Light Localisation (VLL) Artificial Intelligence (AI)-enabled system for Indoor Positioning (IP) purposes. Compared to other IP techniques, VLL offers a similar positioning accuracy, but with the extremely desirable feature of low energy consumption, an aspect of primary relevance in the framework of Wireless Sensor Networks (WSN), self-sufficient sensing systems, Industry 4.0 and Internet of Things (IoT). The proposed system is composed of three modulated optical sources (i.e. LEDs) and a photodiode receiver mounted on the target to be localised. The localisation task is performed by processing the received light intensities through Machine Learning (ML) regression models trained with a set of data gathered during a calibration phase. The regressors are designed to be executed on a low-power microcontroller present in the target, hence establishing an embedded ML paradigm also preserving reduced power consumption features. The proposed models are trained exploiting datasets with different sizes, searching for a trade-off between the training set size, i.e. the duration and complexity of the calibration phase, and the maximum tolerable root mean square error (RMSE). In both cases, some localisation tests show that a satisfactory accuracy can be reached even with a limited complexity of the calibration procedure and that the obtained results fulfil the error constraint used for model design.","PeriodicalId":148281,"journal":{"name":"2022 IEEE International Symposium on Measurements & Networking (M&N)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Machine Learning Model for Microcontrollers Enabling Low Power Indoor Positioning Systems via Visible Light Communication\",\"authors\":\"I. Cappelli, Federico Carli, Matteo Intravaia, Federico Micheletti, G. Peruzzi\",\"doi\":\"10.1109/MN55117.2022.9887638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low-power Visible Light Localisation (VLL) Artificial Intelligence (AI)-enabled system for Indoor Positioning (IP) purposes. Compared to other IP techniques, VLL offers a similar positioning accuracy, but with the extremely desirable feature of low energy consumption, an aspect of primary relevance in the framework of Wireless Sensor Networks (WSN), self-sufficient sensing systems, Industry 4.0 and Internet of Things (IoT). The proposed system is composed of three modulated optical sources (i.e. LEDs) and a photodiode receiver mounted on the target to be localised. The localisation task is performed by processing the received light intensities through Machine Learning (ML) regression models trained with a set of data gathered during a calibration phase. The regressors are designed to be executed on a low-power microcontroller present in the target, hence establishing an embedded ML paradigm also preserving reduced power consumption features. The proposed models are trained exploiting datasets with different sizes, searching for a trade-off between the training set size, i.e. the duration and complexity of the calibration phase, and the maximum tolerable root mean square error (RMSE). In both cases, some localisation tests show that a satisfactory accuracy can be reached even with a limited complexity of the calibration procedure and that the obtained results fulfil the error constraint used for model design.\",\"PeriodicalId\":148281,\"journal\":{\"name\":\"2022 IEEE International Symposium on Measurements & Networking (M&N)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MN55117.2022.9887638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MN55117.2022.9887638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种用于室内定位(IP)目的的低功耗可见光定位(VLL)人工智能(AI)启用系统。与其他IP技术相比,VLL提供了类似的定位精度,但具有非常理想的低能耗特性,这是无线传感器网络(WSN)、自给自足传感系统、工业4.0和物联网(IoT)框架中主要相关的一个方面。所提出的系统由三个调制光源(即led)和安装在待定位目标上的光电二极管接收器组成。定位任务是通过机器学习(ML)回归模型处理接收到的光强度,该模型使用在校准阶段收集的一组数据进行训练。回归器被设计为在目标中存在的低功耗微控制器上执行,因此建立了嵌入式ML范例,同时保留了降低功耗的特征。所提出的模型利用不同大小的数据集进行训练,在训练集大小(即校准阶段的持续时间和复杂性)与最大可容忍的均方根误差(RMSE)之间寻找折衷。在这两种情况下,一些定位试验表明,即使校准程序的复杂性有限,也可以达到令人满意的精度,并且所获得的结果满足用于模型设计的误差约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Model for Microcontrollers Enabling Low Power Indoor Positioning Systems via Visible Light Communication
This paper presents a low-power Visible Light Localisation (VLL) Artificial Intelligence (AI)-enabled system for Indoor Positioning (IP) purposes. Compared to other IP techniques, VLL offers a similar positioning accuracy, but with the extremely desirable feature of low energy consumption, an aspect of primary relevance in the framework of Wireless Sensor Networks (WSN), self-sufficient sensing systems, Industry 4.0 and Internet of Things (IoT). The proposed system is composed of three modulated optical sources (i.e. LEDs) and a photodiode receiver mounted on the target to be localised. The localisation task is performed by processing the received light intensities through Machine Learning (ML) regression models trained with a set of data gathered during a calibration phase. The regressors are designed to be executed on a low-power microcontroller present in the target, hence establishing an embedded ML paradigm also preserving reduced power consumption features. The proposed models are trained exploiting datasets with different sizes, searching for a trade-off between the training set size, i.e. the duration and complexity of the calibration phase, and the maximum tolerable root mean square error (RMSE). In both cases, some localisation tests show that a satisfactory accuracy can be reached even with a limited complexity of the calibration procedure and that the obtained results fulfil the error constraint used for model design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信