电动客车快速充电站协同充电策略

Huimiao Chen, Zechun Hu, Zhiwei Xu, Jiayi Li, Honggang Zhang, Xue Xia, Konghong Ning, Mingwei Peng
{"title":"电动客车快速充电站协同充电策略","authors":"Huimiao Chen, Zechun Hu, Zhiwei Xu, Jiayi Li, Honggang Zhang, Xue Xia, Konghong Ning, Mingwei Peng","doi":"10.1109/APPEEC.2016.7779677","DOIUrl":null,"url":null,"abstract":"Plug-in electric bus (PEB) is regarded as a promising mode of public transport in the future. This paper proposes two real-time coordinated charging strategies to improve the charging costs of electric bus fast charging station (EBFCS) by responding to the Time-of-Use (TOU) electricity prices. At first, a mixed integer linear programming (MILP) based optimal charging strategy is formulated by considering the constraints of PEB charging needs, continuous charging and distribution transformer capacity. To reduce the computation time, a suboptimal strategy is presented with a two-stage model. At the first stage, an ideal charging load profile is optimized without consideration of continuous charging; at the second stage, the continuous charging loads are scheduled to follow the ideal profile through heuristic method. In case studies, charging costs and load profiles under the distribution transformer are respectively simulated under optimal charging strategy, suboptimal charging strategy and uncoordinated charging scenarios. Simulation results demonstrate that the proposed two strategies reduce both the charging costs and the peak load effectively. Comparison between two strategies indicates that the suboptimal charging strategy improves computation efficiency dramatically with only a little charging cost increment.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Coordinated charging strategies for electric bus fast charging stations\",\"authors\":\"Huimiao Chen, Zechun Hu, Zhiwei Xu, Jiayi Li, Honggang Zhang, Xue Xia, Konghong Ning, Mingwei Peng\",\"doi\":\"10.1109/APPEEC.2016.7779677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plug-in electric bus (PEB) is regarded as a promising mode of public transport in the future. This paper proposes two real-time coordinated charging strategies to improve the charging costs of electric bus fast charging station (EBFCS) by responding to the Time-of-Use (TOU) electricity prices. At first, a mixed integer linear programming (MILP) based optimal charging strategy is formulated by considering the constraints of PEB charging needs, continuous charging and distribution transformer capacity. To reduce the computation time, a suboptimal strategy is presented with a two-stage model. At the first stage, an ideal charging load profile is optimized without consideration of continuous charging; at the second stage, the continuous charging loads are scheduled to follow the ideal profile through heuristic method. In case studies, charging costs and load profiles under the distribution transformer are respectively simulated under optimal charging strategy, suboptimal charging strategy and uncoordinated charging scenarios. Simulation results demonstrate that the proposed two strategies reduce both the charging costs and the peak load effectively. Comparison between two strategies indicates that the suboptimal charging strategy improves computation efficiency dramatically with only a little charging cost increment.\",\"PeriodicalId\":117485,\"journal\":{\"name\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2016.7779677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

插电式电动公交车(PEB)被认为是未来一种很有前途的公共交通方式。本文提出了两种实时协调充电策略,通过响应分时电价来提高电动巴士快速充电站的充电成本。首先,考虑PEB充电需求、连续充电和配电变压器容量约束,建立了基于混合整数线性规划(MILP)的最优充电策略;为了减少计算时间,提出了一种基于两阶段模型的次优策略。在第一阶段,在不考虑连续充电的情况下优化理想充电负荷;在第二阶段,通过启发式方法将连续充电负荷调度到理想轮廓线。在案例研究中,分别模拟了最优充电策略、次优充电策略和非协调充电场景下配电变压器的充电成本和负荷分布。仿真结果表明,两种策略均能有效降低充电成本和峰值负荷。两种策略的比较表明,次优充电策略在充电成本增量很小的情况下显著提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated charging strategies for electric bus fast charging stations
Plug-in electric bus (PEB) is regarded as a promising mode of public transport in the future. This paper proposes two real-time coordinated charging strategies to improve the charging costs of electric bus fast charging station (EBFCS) by responding to the Time-of-Use (TOU) electricity prices. At first, a mixed integer linear programming (MILP) based optimal charging strategy is formulated by considering the constraints of PEB charging needs, continuous charging and distribution transformer capacity. To reduce the computation time, a suboptimal strategy is presented with a two-stage model. At the first stage, an ideal charging load profile is optimized without consideration of continuous charging; at the second stage, the continuous charging loads are scheduled to follow the ideal profile through heuristic method. In case studies, charging costs and load profiles under the distribution transformer are respectively simulated under optimal charging strategy, suboptimal charging strategy and uncoordinated charging scenarios. Simulation results demonstrate that the proposed two strategies reduce both the charging costs and the peak load effectively. Comparison between two strategies indicates that the suboptimal charging strategy improves computation efficiency dramatically with only a little charging cost increment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信