基于图神经网络的可伸缩缺失数据输入

Guillaume Lachaud, Patricia Conde Céspedes, M. Trocan
{"title":"基于图神经网络的可伸缩缺失数据输入","authors":"Guillaume Lachaud, Patricia Conde Céspedes, M. Trocan","doi":"10.1109/ICASSPW59220.2023.10193535","DOIUrl":null,"url":null,"abstract":"Missing features in tabular and graph structured data are common: a company may not want to disclose all of their accounting, and users online do not always engage in social platforms in the same way as their peers. Recently, models such as the GRAPE architecture have achieved state-of-the-art results in the task of feature imputation. We present an extension of GRAPE that performs mini-batch learning on datasets which do not fit in the GPU. Moreover, we add preprocessing and post-processing steps that allow the model to be used with graph structured data. We experimentally show the behaviour of the model on an academic citation network under different regimes of missing data. We observe that the model performance starts decreasing when we have less than 1% of observed edges. We additionally perform an ablation study of key elements of the model, such as its capacity, the batch size and the number of layers.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Missing Data Imputation With Graph Neural Networks\",\"authors\":\"Guillaume Lachaud, Patricia Conde Céspedes, M. Trocan\",\"doi\":\"10.1109/ICASSPW59220.2023.10193535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing features in tabular and graph structured data are common: a company may not want to disclose all of their accounting, and users online do not always engage in social platforms in the same way as their peers. Recently, models such as the GRAPE architecture have achieved state-of-the-art results in the task of feature imputation. We present an extension of GRAPE that performs mini-batch learning on datasets which do not fit in the GPU. Moreover, we add preprocessing and post-processing steps that allow the model to be used with graph structured data. We experimentally show the behaviour of the model on an academic citation network under different regimes of missing data. We observe that the model performance starts decreasing when we have less than 1% of observed edges. We additionally perform an ablation study of key elements of the model, such as its capacity, the batch size and the number of layers.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表格和图形结构化数据中缺失的功能很常见:公司可能不想披露所有的会计信息,在线用户并不总是以与同龄人相同的方式参与社交平台。近年来,葡萄结构等模型在特征输入方面取得了较好的效果。我们提出了GRAPE的扩展,它对不适合GPU的数据集执行小批量学习。此外,我们还添加了预处理和后处理步骤,使该模型能够与图结构数据一起使用。我们通过实验展示了该模型在不同缺失数据制度下在学术引文网络上的行为。我们观察到,当我们观察到的边缘少于1%时,模型性能开始下降。我们还对模型的关键要素进行了消融研究,例如其容量、批量大小和层数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Missing Data Imputation With Graph Neural Networks
Missing features in tabular and graph structured data are common: a company may not want to disclose all of their accounting, and users online do not always engage in social platforms in the same way as their peers. Recently, models such as the GRAPE architecture have achieved state-of-the-art results in the task of feature imputation. We present an extension of GRAPE that performs mini-batch learning on datasets which do not fit in the GPU. Moreover, we add preprocessing and post-processing steps that allow the model to be used with graph structured data. We experimentally show the behaviour of the model on an academic citation network under different regimes of missing data. We observe that the model performance starts decreasing when we have less than 1% of observed edges. We additionally perform an ablation study of key elements of the model, such as its capacity, the batch size and the number of layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信