加密僵尸网络检测方案

Wang Ying
{"title":"加密僵尸网络检测方案","authors":"Wang Ying","doi":"10.1109/3PGCIC.2014.110","DOIUrl":null,"url":null,"abstract":"Botnets have started using Information obfuscation techniques include encryption to evade detection. In order to detect encrypted botnet traffic, in this paper we see detection of encrypted botnet traffic from normal network traffic as traffic classification problem. After analyses features of encrypted botnet traffic, we propose a novel meta-level classification algorithm based on content features and flow features of traffic. The content features consist of information entropy and byte frequency distribution, and the flow features consist of port number, payload length and protocol type of application layer. Then we use Naive Bayes classification algorithms to detect botnet traffic. The related experiment shows that our method has good detection effect.","PeriodicalId":395610,"journal":{"name":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Encrypted Botnet Detection Scheme\",\"authors\":\"Wang Ying\",\"doi\":\"10.1109/3PGCIC.2014.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Botnets have started using Information obfuscation techniques include encryption to evade detection. In order to detect encrypted botnet traffic, in this paper we see detection of encrypted botnet traffic from normal network traffic as traffic classification problem. After analyses features of encrypted botnet traffic, we propose a novel meta-level classification algorithm based on content features and flow features of traffic. The content features consist of information entropy and byte frequency distribution, and the flow features consist of port number, payload length and protocol type of application layer. Then we use Naive Bayes classification algorithms to detect botnet traffic. The related experiment shows that our method has good detection effect.\",\"PeriodicalId\":395610,\"journal\":{\"name\":\"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3PGCIC.2014.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2014.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

僵尸网络已经开始使用包括加密在内的信息混淆技术来逃避检测。为了检测加密的僵尸网络流量,本文将从正常网络流量中检测加密的僵尸网络流量视为流量分类问题。在分析加密僵尸网络流量特征的基础上,提出了一种基于流量内容特征和流量特征的元级分类算法。内容特征包括信息熵和字节频率分布,流特征包括端口号、有效载荷长度和应用层协议类型。然后使用朴素贝叶斯分类算法检测僵尸网络流量。相关实验表明,该方法具有良好的检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encrypted Botnet Detection Scheme
Botnets have started using Information obfuscation techniques include encryption to evade detection. In order to detect encrypted botnet traffic, in this paper we see detection of encrypted botnet traffic from normal network traffic as traffic classification problem. After analyses features of encrypted botnet traffic, we propose a novel meta-level classification algorithm based on content features and flow features of traffic. The content features consist of information entropy and byte frequency distribution, and the flow features consist of port number, payload length and protocol type of application layer. Then we use Naive Bayes classification algorithms to detect botnet traffic. The related experiment shows that our method has good detection effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信