在概率密度估计中消除用户交互

K. Barbé, Lee Gonzales Fuentes, L. Barford, W. Moer
{"title":"在概率密度估计中消除用户交互","authors":"K. Barbé, Lee Gonzales Fuentes, L. Barford, W. Moer","doi":"10.1109/I2MTC.2013.6555622","DOIUrl":null,"url":null,"abstract":"Despite the extensive literature, describing the probability content of measurements remains an important topic for engineering problems. The histogram remains the golden standard, even though kernel density estimation is a strong competitor when smooth estimates are desired. Critical user interaction is required for the use of both the histograms and kernel densities. A good choice for the bandwidth is essential in both cases. On top of that the kernel density method requires a proper choice of the kernel. Incorrect choices may lead to incorrect results generated by either masking important details or introducing false details. In this paper, we propose a new approach which requires no user-defined choices. The method is therefore fully automatic and provides the user a smooth density estimate of the probability content.","PeriodicalId":432388,"journal":{"name":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Eliminating user-interaction in probability density estimation\",\"authors\":\"K. Barbé, Lee Gonzales Fuentes, L. Barford, W. Moer\",\"doi\":\"10.1109/I2MTC.2013.6555622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the extensive literature, describing the probability content of measurements remains an important topic for engineering problems. The histogram remains the golden standard, even though kernel density estimation is a strong competitor when smooth estimates are desired. Critical user interaction is required for the use of both the histograms and kernel densities. A good choice for the bandwidth is essential in both cases. On top of that the kernel density method requires a proper choice of the kernel. Incorrect choices may lead to incorrect results generated by either masking important details or introducing false details. In this paper, we propose a new approach which requires no user-defined choices. The method is therefore fully automatic and provides the user a smooth density estimate of the probability content.\",\"PeriodicalId\":432388,\"journal\":{\"name\":\"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2013.6555622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2013.6555622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

尽管有大量的文献,描述测量的概率内容仍然是工程问题的一个重要课题。直方图仍然是黄金标准,即使当需要平滑估计时,核密度估计是一个强有力的竞争对手。直方图和核密度的使用都需要关键的用户交互。在这两种情况下,良好的带宽选择都是必不可少的。最重要的是,核密度方法需要正确选择核。不正确的选择可能会导致不正确的结果,要么掩盖重要的细节,要么引入错误的细节。在本文中,我们提出了一种不需要用户自定义选择的新方法。因此,该方法是全自动的,并为用户提供了概率内容的平滑密度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eliminating user-interaction in probability density estimation
Despite the extensive literature, describing the probability content of measurements remains an important topic for engineering problems. The histogram remains the golden standard, even though kernel density estimation is a strong competitor when smooth estimates are desired. Critical user interaction is required for the use of both the histograms and kernel densities. A good choice for the bandwidth is essential in both cases. On top of that the kernel density method requires a proper choice of the kernel. Incorrect choices may lead to incorrect results generated by either masking important details or introducing false details. In this paper, we propose a new approach which requires no user-defined choices. The method is therefore fully automatic and provides the user a smooth density estimate of the probability content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信