基于目标和上下文嵌入的改进词表示

Nancy Fulda, Nathaniel R. Robinson
{"title":"基于目标和上下文嵌入的改进词表示","authors":"Nancy Fulda, Nathaniel R. Robinson","doi":"10.1109/SAMI50585.2021.9378672","DOIUrl":null,"url":null,"abstract":"Neural embedding models are often described as having an ‘embedding layer’, or a set of network activations that can be extracted from the model in order to obtain word or sentence representations. In this paper, we show via a modification of the well-known word2vec algorithm that relevant semantic information is contained throughout the entirety of the network, not just in the commonly-extracted hidden layer. This extra information can be extracted by summing embeddings from both the input and output weight matrices of a skip-gram model. Word embeddings generated via this method exhibit strong semantic structure, and are able to outperform traditionally extracted word2vec embeddings in a number of analogy tasks.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Word Representations Via Summed Target and Context Embeddings\",\"authors\":\"Nancy Fulda, Nathaniel R. Robinson\",\"doi\":\"10.1109/SAMI50585.2021.9378672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural embedding models are often described as having an ‘embedding layer’, or a set of network activations that can be extracted from the model in order to obtain word or sentence representations. In this paper, we show via a modification of the well-known word2vec algorithm that relevant semantic information is contained throughout the entirety of the network, not just in the commonly-extracted hidden layer. This extra information can be extracted by summing embeddings from both the input and output weight matrices of a skip-gram model. Word embeddings generated via this method exhibit strong semantic structure, and are able to outperform traditionally extracted word2vec embeddings in a number of analogy tasks.\",\"PeriodicalId\":402414,\"journal\":{\"name\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI50585.2021.9378672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经嵌入模型通常被描述为具有一个“嵌入层”,或者一组可以从模型中提取的网络激活,以获得单词或句子的表示。在本文中,我们通过对著名的word2vec算法的修改表明,相关的语义信息包含在整个网络中,而不仅仅是在通常提取的隐藏层中。这些额外的信息可以通过对skip-gram模型的输入和输出权重矩阵的嵌入求和来提取。通过这种方法生成的词嵌入显示出强大的语义结构,并且能够在许多类比任务中优于传统提取的word2vec嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Word Representations Via Summed Target and Context Embeddings
Neural embedding models are often described as having an ‘embedding layer’, or a set of network activations that can be extracted from the model in order to obtain word or sentence representations. In this paper, we show via a modification of the well-known word2vec algorithm that relevant semantic information is contained throughout the entirety of the network, not just in the commonly-extracted hidden layer. This extra information can be extracted by summing embeddings from both the input and output weight matrices of a skip-gram model. Word embeddings generated via this method exhibit strong semantic structure, and are able to outperform traditionally extracted word2vec embeddings in a number of analogy tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信