SMR系统中神经网络检测器迭代译码的研究

M. Nishikawa, Y. Nakamura, Y. Kanai, H. Osawa, Y. Okamoto
{"title":"SMR系统中神经网络检测器迭代译码的研究","authors":"M. Nishikawa, Y. Nakamura, Y. Kanai, H. Osawa, Y. Okamoto","doi":"10.1109/INTERMAG42984.2021.9579979","DOIUrl":null,"url":null,"abstract":"We study the low-density parity-check (LDPC) coding and iterative decoding system, as a signal processing system for the shingled magnetic recording (SMR) in two-dimensional magnetic recording (TDMR). Previously we reported that a waveform equalization using a two-dimensional finite impulse response (TD-FIR) filter or an inter-track interference (ITI) canceler reduced the influence of ITI. We also proposed a neural network detector (NND), and evaluated the performance of the first decoding by the NND. In this paper, we propose the NND which iteratively calculates the log-likelihood ratio (LLR) as the decoding reliability using the returned sum-product (SP) decoder output sequence in addition to the TD-FIR filter output sequence. Furthermore, we evaluate the performance of the iterative decoding system using an NND, and compare it to that of the system using a soft-output Viterbi algorithm (SOVA) detector with the signal-dependent noise predictor.","PeriodicalId":129905,"journal":{"name":"2021 IEEE International Magnetic Conference (INTERMAG)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Iterative Decoding by Neural Network Detector in SMR System\",\"authors\":\"M. Nishikawa, Y. Nakamura, Y. Kanai, H. Osawa, Y. Okamoto\",\"doi\":\"10.1109/INTERMAG42984.2021.9579979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the low-density parity-check (LDPC) coding and iterative decoding system, as a signal processing system for the shingled magnetic recording (SMR) in two-dimensional magnetic recording (TDMR). Previously we reported that a waveform equalization using a two-dimensional finite impulse response (TD-FIR) filter or an inter-track interference (ITI) canceler reduced the influence of ITI. We also proposed a neural network detector (NND), and evaluated the performance of the first decoding by the NND. In this paper, we propose the NND which iteratively calculates the log-likelihood ratio (LLR) as the decoding reliability using the returned sum-product (SP) decoder output sequence in addition to the TD-FIR filter output sequence. Furthermore, we evaluate the performance of the iterative decoding system using an NND, and compare it to that of the system using a soft-output Viterbi algorithm (SOVA) detector with the signal-dependent noise predictor.\",\"PeriodicalId\":129905,\"journal\":{\"name\":\"2021 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERMAG42984.2021.9579979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERMAG42984.2021.9579979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了低密度奇偶校验(LDPC)编码和迭代译码系统,作为二维磁记录(TDMR)中瓦片磁记录(SMR)的信号处理系统。以前我们报道过,使用二维有限脉冲响应(TD-FIR)滤波器或轨道间干扰(ITI)消除器进行波形均衡可以减少ITI的影响。我们还提出了一种神经网络检测器(NND),并对NND的首次解码性能进行了评估。在本文中,我们提出了迭代计算对数似然比(LLR)作为解码可靠性的NND,使用返回的和积(SP)解码器输出序列和TD-FIR滤波器输出序列。此外,我们使用NND评估了迭代解码系统的性能,并将其与使用带有信号相关噪声预测器的软输出Viterbi算法(SOVA)检测器的系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Iterative Decoding by Neural Network Detector in SMR System
We study the low-density parity-check (LDPC) coding and iterative decoding system, as a signal processing system for the shingled magnetic recording (SMR) in two-dimensional magnetic recording (TDMR). Previously we reported that a waveform equalization using a two-dimensional finite impulse response (TD-FIR) filter or an inter-track interference (ITI) canceler reduced the influence of ITI. We also proposed a neural network detector (NND), and evaluated the performance of the first decoding by the NND. In this paper, we propose the NND which iteratively calculates the log-likelihood ratio (LLR) as the decoding reliability using the returned sum-product (SP) decoder output sequence in addition to the TD-FIR filter output sequence. Furthermore, we evaluate the performance of the iterative decoding system using an NND, and compare it to that of the system using a soft-output Viterbi algorithm (SOVA) detector with the signal-dependent noise predictor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信