学习自动机前馈网络的全局收敛性

V. V. Phansalkar, M. Thathachar
{"title":"学习自动机前馈网络的全局收敛性","authors":"V. V. Phansalkar, M. Thathachar","doi":"10.1109/IJCNN.1992.227089","DOIUrl":null,"url":null,"abstract":"A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement learning system. The parameters of each learning automaton are updated using an algorithm consisting of a gradient following term and a random perturbation term. The algorithm is approximated by the Langevin equation. It is shown that it converges to the global maximum. The algorithm is decentralized and the units do not have any information exchange during updating. Simulation results on a pattern recognition problem show that reasonable rates of convergence can be obtained.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global convergence of feedforward networks of learning automata\",\"authors\":\"V. V. Phansalkar, M. Thathachar\",\"doi\":\"10.1109/IJCNN.1992.227089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement learning system. The parameters of each learning automaton are updated using an algorithm consisting of a gradient following term and a random perturbation term. The algorithm is approximated by the Langevin equation. It is shown that it converges to the global maximum. The algorithm is decentralized and the units do not have any information exchange during updating. Simulation results on a pattern recognition problem show that reasonable rates of convergence can be obtained.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将一个由参数化学习自动机组成的前馈网络作为强化学习系统的模型。使用由梯度跟随项和随机扰动项组成的算法更新每个学习自动机的参数。该算法由朗之万方程近似表示。结果表明,它收敛于全局极大值。该算法是去中心化的,单元在更新过程中没有任何信息交换。对一个模式识别问题的仿真结果表明,该方法可以获得合理的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global convergence of feedforward networks of learning automata
A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement learning system. The parameters of each learning automaton are updated using an algorithm consisting of a gradient following term and a random perturbation term. The algorithm is approximated by the Langevin equation. It is shown that it converges to the global maximum. The algorithm is decentralized and the units do not have any information exchange during updating. Simulation results on a pattern recognition problem show that reasonable rates of convergence can be obtained.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信