流动液体层中气泡行为的实验研究

Zhengzheng Zhang, Liangxing Li, Shuanglei Zhang, Afnan Saleem
{"title":"流动液体层中气泡行为的实验研究","authors":"Zhengzheng Zhang, Liangxing Li, Shuanglei Zhang, Afnan Saleem","doi":"10.1115/icone2020-16397","DOIUrl":null,"url":null,"abstract":"\n A visualized experimental system is designed and constructed to investigate the bubble dynamic in a flowing liquid layer. Motivated by reducing uncertainties and digging a deep understand on the formation mechanism of boiling bubbles, the bubbles are formed by injecting air through a submerged orifice in our present work, where the influence of thermal physics, nucleation site density and dry spot are stripped. The water flow rate and the air flow rate are in the range of 72–324 ml/min and 0.8–2.0 ml/min, respectively. The bubble formation process in the smooth channel and the rib channel are investigated. The results state that increasing the liquid flow rates lead to the increasing bubble detachment frequency and the decreasing bubble detachment volume. Besides, the larger the liquid flow rate is, the closer the bubble center of mass is to the wall. The rib has a significant influence on the bubble formation process. In the rib channel, it is more difficult for bubbles to detach from the orifice compared that in a smooth channel. Besides, the bubble detachment volume in a rib channel is larger than it in a smooth channel.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Bubble Behaviour in a Flowing Liquid Layer\",\"authors\":\"Zhengzheng Zhang, Liangxing Li, Shuanglei Zhang, Afnan Saleem\",\"doi\":\"10.1115/icone2020-16397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A visualized experimental system is designed and constructed to investigate the bubble dynamic in a flowing liquid layer. Motivated by reducing uncertainties and digging a deep understand on the formation mechanism of boiling bubbles, the bubbles are formed by injecting air through a submerged orifice in our present work, where the influence of thermal physics, nucleation site density and dry spot are stripped. The water flow rate and the air flow rate are in the range of 72–324 ml/min and 0.8–2.0 ml/min, respectively. The bubble formation process in the smooth channel and the rib channel are investigated. The results state that increasing the liquid flow rates lead to the increasing bubble detachment frequency and the decreasing bubble detachment volume. Besides, the larger the liquid flow rate is, the closer the bubble center of mass is to the wall. The rib has a significant influence on the bubble formation process. In the rib channel, it is more difficult for bubbles to detach from the orifice compared that in a smooth channel. Besides, the bubble detachment volume in a rib channel is larger than it in a smooth channel.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计并构建了一个可视化的实验系统来研究流动液体层中的气泡动力学。为了减少不确定性,加深对沸腾气泡形成机理的理解,本文采用浸没孔注入空气的方法形成沸腾气泡,去除热物理、成核点密度和干点的影响。水流速为72 ~ 324ml /min,空气流速为0.8 ~ 2.0 ml/min。研究了光滑通道和肋形通道中气泡的形成过程。结果表明:增大液体流量,气泡分离频率增加,气泡分离体积减小;此外,液体流速越大,气泡质心越靠近壁面。肋对气泡的形成过程有显著的影响。在肋形通道中,气泡比在光滑通道中更难脱离孔板。此外,肋状通道中的气泡分离体积大于光滑通道中的气泡分离体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Bubble Behaviour in a Flowing Liquid Layer
A visualized experimental system is designed and constructed to investigate the bubble dynamic in a flowing liquid layer. Motivated by reducing uncertainties and digging a deep understand on the formation mechanism of boiling bubbles, the bubbles are formed by injecting air through a submerged orifice in our present work, where the influence of thermal physics, nucleation site density and dry spot are stripped. The water flow rate and the air flow rate are in the range of 72–324 ml/min and 0.8–2.0 ml/min, respectively. The bubble formation process in the smooth channel and the rib channel are investigated. The results state that increasing the liquid flow rates lead to the increasing bubble detachment frequency and the decreasing bubble detachment volume. Besides, the larger the liquid flow rate is, the closer the bubble center of mass is to the wall. The rib has a significant influence on the bubble formation process. In the rib channel, it is more difficult for bubbles to detach from the orifice compared that in a smooth channel. Besides, the bubble detachment volume in a rib channel is larger than it in a smooth channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信