{"title":"模态分解和一阶理论的复杂性","authors":"Stefan Göller, J. C. Jung, Markus Lohrey","doi":"10.1109/LICS.2012.43","DOIUrl":null,"url":null,"abstract":"We show that the satisfiability problem for the two-dimensional extension KxK of unimodal K is nonelementary, hereby confirming a conjecture of Marx and Mikulas from 2001. Our lower bound technique allows us to derive further lower bounds for many-dimensional modal logics for which only elementary lower bounds were previously known. We also derive nonelementary lower bounds on the sizes of Feferman-Vaught decompositions w.r.t. product for any decomposable logic that is at least as expressive as unimodal K. Finally, we study the sizes of Feferman-Vaught decompositions and formulas in Gaifman normal form for fixed-variable fragments of first-order logic.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The Complexity of Decomposing Modal and First-Order Theories\",\"authors\":\"Stefan Göller, J. C. Jung, Markus Lohrey\",\"doi\":\"10.1109/LICS.2012.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the satisfiability problem for the two-dimensional extension KxK of unimodal K is nonelementary, hereby confirming a conjecture of Marx and Mikulas from 2001. Our lower bound technique allows us to derive further lower bounds for many-dimensional modal logics for which only elementary lower bounds were previously known. We also derive nonelementary lower bounds on the sizes of Feferman-Vaught decompositions w.r.t. product for any decomposable logic that is at least as expressive as unimodal K. Finally, we study the sizes of Feferman-Vaught decompositions and formulas in Gaifman normal form for fixed-variable fragments of first-order logic.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Complexity of Decomposing Modal and First-Order Theories
We show that the satisfiability problem for the two-dimensional extension KxK of unimodal K is nonelementary, hereby confirming a conjecture of Marx and Mikulas from 2001. Our lower bound technique allows us to derive further lower bounds for many-dimensional modal logics for which only elementary lower bounds were previously known. We also derive nonelementary lower bounds on the sizes of Feferman-Vaught decompositions w.r.t. product for any decomposable logic that is at least as expressive as unimodal K. Finally, we study the sizes of Feferman-Vaught decompositions and formulas in Gaifman normal form for fixed-variable fragments of first-order logic.