基于VGG16+SSD的640x480图像实时目标检测

Hyeong-Ju Kang
{"title":"基于VGG16+SSD的640x480图像实时目标检测","authors":"Hyeong-Ju Kang","doi":"10.1109/ICFPT47387.2019.00082","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation requirement prohibits real-time processing, 30 frames per second (FPS). This demonstration will show an CNN accelerator that can process real-time object detection on the 640x480 image. A high performance, complex CNN was implemented, single-shot multibox detector (SSD) with VGG16. The number of weights is reduced by a pruning scheme. For the higher utilization of operators, the accelerator-aware pruning was applied. The weights of the pruned network can be entirely stored in the internal memory. The proposed design reaches 42 FPS on XC7VX690T FPGA, showing VOC07 test mAP of 78.13%.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-Time Object Detection on 640x480 Image With VGG16+SSD\",\"authors\":\"Hyeong-Ju Kang\",\"doi\":\"10.1109/ICFPT47387.2019.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation requirement prohibits real-time processing, 30 frames per second (FPS). This demonstration will show an CNN accelerator that can process real-time object detection on the 640x480 image. A high performance, complex CNN was implemented, single-shot multibox detector (SSD) with VGG16. The number of weights is reduced by a pruning scheme. For the higher utilization of operators, the accelerator-aware pruning was applied. The weights of the pruned network can be entirely stored in the internal memory. The proposed design reaches 42 FPS on XC7VX690T FPGA, showing VOC07 test mAP of 78.13%.\",\"PeriodicalId\":241340,\"journal\":{\"name\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT47387.2019.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

卷积神经网络(cnn)在包括目标检测在内的计算机视觉任务中表现出很高的性能,但其大量的权重存储和计算需求阻碍了实时处理,每秒30帧(FPS)。本演示将展示一个CNN加速器,可以在640x480图像上处理实时目标检测。采用VGG16实现了一种高性能、复杂的CNN单镜头多盒探测器(SSD)。通过修剪方案减少权值的数量。为了提高算子的利用率,采用了加速器感知剪枝。修剪后的网络权值可以全部存储在内存中。本设计在XC7VX690T FPGA上达到42 FPS, VOC07测试mAP值为78.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Object Detection on 640x480 Image With VGG16+SSD
Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation requirement prohibits real-time processing, 30 frames per second (FPS). This demonstration will show an CNN accelerator that can process real-time object detection on the 640x480 image. A high performance, complex CNN was implemented, single-shot multibox detector (SSD) with VGG16. The number of weights is reduced by a pruning scheme. For the higher utilization of operators, the accelerator-aware pruning was applied. The weights of the pruned network can be entirely stored in the internal memory. The proposed design reaches 42 FPS on XC7VX690T FPGA, showing VOC07 test mAP of 78.13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信